Featured Research

from universities, journals, and other organizations

Multidimensional Technique Enhances Vibrational Spectroscopy

Date:
September 5, 2000
Source:
University Of Illinois At Urbana-Champaign
Summary:
By combining ultrashort pulses from a mid-infrared laser with pulses of visible light, chemists at the University of Illinois have added an important new dimension to vibrational spectroscopy. The new spectroscopic technique allows researchers to investigate vibrational energy redistribution in molecules with unprecedented detail.

CHAMPAIGN, Ill. -- By combining ultrashort pulses from a mid-infrared laser with pulses of visible light, chemists at the University of Illinois have added an important new dimension to vibrational spectroscopy. The new spectroscopic technique allows researchers to investigate vibrational energy redistribution in molecules with unprecedented detail.

"Molecules have specific vibrational motions, which can be used as spectral fingerprints," said Dana Dlott, a UI professor of chemistry. "Our spectroscopic method allows us to monitor vibrational energy flow through a molecule on femtosecond time scales. We can therefore characterize the dynamic mechanical properties of molecules in real time -- which is important in virtually every chemical process and of special interest in the field of nanotechnology, where machines will be the size of molecules."

Ordinary infrared spectroscopy is a one-dimensional technique that is widely used to identify molecules by their spectral fingerprints. By adding both a time dimension and an additional spectral dimension, Dlott and his colleagues -- postdoctoral research associate John Deΰk and graduate student Lawrence Iwaki -- have developed a three-dimensional technique that yields much more information. Instead of getting just a fingerprint, they obtain an entire library of "motion pictures."

"When a molecule is laser-pumped by an infrared pulse, it executes a complicated, time-dependent dance," Dlott said. "We can watch that dance by obtaining a two-dimensional time-series of Raman spectra that shows how the vibrational energy flows through the molecule. Then, by tuning the infrared pulse into different parts of the molecule's spectrum, we get different dances. After recording all the possible dances the molecule can execute, we have a complete picture of the molecular mechanics."

Using their technique, the researchers studied two common and important liquids, water and methyl alcohol, with extremely fine detail. "Of particular interest was how the vibrational energy redistribution dance changed as the pump pulse was tuned through the third dimension," Dlott said. "Earlier work by other researchers suggested this dance might not depend much on where the infrared pulse occurs. But we found that it depends a great deal on where we excite the molecules; and more importantly, that measuring the dependence of the vibrational energy redistribution on infrared frequency provides the key to elucidating the fundamental mechanics involved."

Ultimately, by providing femtosecond-resolved snapshots of molecular motions, multidimensional vibrational spectroscopy could allow researchers to learn much more about the mechanics of molecules. This, in turn, could lead to a greatly improved understanding of chemical processes, and even better analytical techniques for studying complicated mixtures of large molecules such as biological systems.

Dlott presented the team's latest experimental results at the American Chemical Society meeting, held Aug. 20-24 in Washington, D.C. A paper describing the technique will appear in the Journal of Physical Chemistry.


Story Source:

The above story is based on materials provided by University Of Illinois At Urbana-Champaign. Note: Materials may be edited for content and length.


Cite This Page:

University Of Illinois At Urbana-Champaign. "Multidimensional Technique Enhances Vibrational Spectroscopy." ScienceDaily. ScienceDaily, 5 September 2000. <www.sciencedaily.com/releases/2000/09/000904122648.htm>.
University Of Illinois At Urbana-Champaign. (2000, September 5). Multidimensional Technique Enhances Vibrational Spectroscopy. ScienceDaily. Retrieved October 21, 2014 from www.sciencedaily.com/releases/2000/09/000904122648.htm
University Of Illinois At Urbana-Champaign. "Multidimensional Technique Enhances Vibrational Spectroscopy." ScienceDaily. www.sciencedaily.com/releases/2000/09/000904122648.htm (accessed October 21, 2014).

Share This



More Matter & Energy News

Tuesday, October 21, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Thanks, Marty McFly! Hoverboards Could Be Coming In 2015

Thanks, Marty McFly! Hoverboards Could Be Coming In 2015

Newsy (Oct. 21, 2014) — If you've ever watched "Back to the Future Part II" and wanted to get your hands on a hoverboard, well, you might soon be in luck. Video provided by Newsy
Powered by NewsLook.com
Robots to Fly Planes Where Humans Can't

Robots to Fly Planes Where Humans Can't

Reuters - Innovations Video Online (Oct. 21, 2014) — Researchers in South Korea are developing a robotic pilot that could potentially replace humans in the cockpit. Unlike drones and autopilot programs which are configured for specific aircraft, the robots' humanoid design will allow it to fly any type of plane with no additional sensors. Ben Gruber reports. Video provided by Reuters
Powered by NewsLook.com
Graphene Paint Offers Rust-Free Future

Graphene Paint Offers Rust-Free Future

Reuters - Innovations Video Online (Oct. 21, 2014) — British scientists have developed a prototype graphene paint that can make coatings which are resistant to liquids, gases, and chemicals. The team says the paint could have a variety of uses, from stopping ships rusting to keeping food fresher for longer. Jim Drury reports. Video provided by Reuters
Powered by NewsLook.com
Portable Breathalyzer Gets You Home Safely

Portable Breathalyzer Gets You Home Safely

Buzz60 (Oct. 21, 2014) — Breeze, a portable breathalyzer, gets you home safely by instantly showing your blood alcohol content, and with one tap, lets you call an Uber, a cab or a friend from your contact list to pick you up. Sean Dowling (@SeanDowlingTV) has the details. Video provided by Buzz60
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins