Featured Research

from universities, journals, and other organizations

Cell Studies May Further Gene Therapy Prospects For Head And Neck Cancer

Date:
November 22, 2000
Source:
University Of North Carolina School Of Medicine
Summary:
New laboratory research at the University of North Carolina appears to kindle prospects of finding ways to treat head and neck cancer with gene therapy. The study published November 20 in the journal Human Gene Therapy suggests that gene therapy techniques may be developed to preferentially target cancer cells or pre-cancerous cells that are at high risk for becoming malignant.

CHAPEL HILL - New laboratory research at the University of North Carolina appears to kindle prospects of finding ways to treat head and neck cancer with gene therapy.

The study published November 20 in the journal Human Gene Therapy suggests that gene therapy techniques may be developed to preferentially target cancer cells or pre-cancerous cells that are at high risk for becoming malignant.

"Right now there's no clinical application of our work in human gene therapy, but findings from our tissue culture model suggest there may be," said Wendell G. Yarbrough, MD, assistant professor of otolaryngology/head and neck surgery at UNC-CH School of Medicine and Hospitals.

The Carolina researcher, a member of the UNC Lineberger Comprehensive Cancer Center, said he and his collaborators developed a tissue culture system that mimicked how normal cells grow in the body. Using cultured cells, they created models that mimicked the three-dimensional structure of head and neck epithelium, the normal tissue that lines the inside of humans' mouths and throats. This allowed a more realistic investigation of a widely studied gene transfer technique that uses a common cold virus - adenovirus - to infect cells and deliver therapeutic payloads.

"If you take cells out of the body and put them in tissue culture, they typically grow as a monolayer, one cell layer thick," Yarbrough explained. "But that's not the way they are in the body. These can be infected by adenoviruses very easily. "But if you let cells start piling up on each other and differentiating the way they do in the body, then it's very hard to infect them."

Now it appears that the reason for that is linked to whether or not the cells show gene expression of a specific protein, a receptor site known as hCAR, human coxsackie and adenovirus receptor.

"And that's what we found. We correlated the ability of cells to be infected by adenovirus with the expression of hCAR, a receptor that's responsible for binding to adenovirus and getting it into the cells," Yarbrough said. "This is the first report of gene expression of this receptor in normal human epithelium."

But that was only part of the story.

The researchers found it much more difficult to infect normal human oropharyngeal (mouth) epithelial cells than it was to infect oropharyngeal tumor cells. "We wanted to know why. And we found that as normal cells differentiate, they lose expression of this hCAR receptor," Yarbrough explained. "Only the basal cells, the ones that are still dividing, express this receptor whereas the superficial cells that are differentiated do not," he said.

Thus, according to the researchers, the data suggest that in normal epithelium the overlying squamous cells act as a barrier preventing adenoviral infection of underlying cells that would otherwise be easily infected. This situation is in stark contrast to that observed in tumor cells. Tumor cells do not lose expression of the adenoviral receptor as they pile up and therefore are easily infected. The overlying tumor cells do not act as a barrier and therefore allow for infection of underlying tumor cells.

According to the researchers, the fact that tumor cells can be easily infected while normal cells are poorly infected offers an opportunity to use gene therapy to specifically treat cancer tissues without damaging normal tissues.

The findings also carry possible implications for treating severe cellular dysplasia, a precancerous condition characterized by cellular abnormalities. These cells are undifferentiated and like cancer cells express the hCAR receptor.

"So, theoretically, in people at high risk for cancer, adenoviral gene therapy would only infect the pre-cancerous sites and leave the normal, well-differentiated sites alone," Yarbrough said. "We think this model is useful for testing future gene therapy agents to determine the effects on normal epithelium and tumor cells. It's a great model to study gene therapy without having to test humans or animals. We wanted a model that best replicates what goes on in humans and we think our model does that."

Yarbrough's study collaborators included otolaryngology/head and neck surgeon Mark E. Hutchin, MD and Raymond J. Pickles, PhD, research associate with UNC's Cystic Fibrosis-Pulmonary Research and Treatment Center.


Story Source:

The above story is based on materials provided by University Of North Carolina School Of Medicine. Note: Materials may be edited for content and length.


Cite This Page:

University Of North Carolina School Of Medicine. "Cell Studies May Further Gene Therapy Prospects For Head And Neck Cancer." ScienceDaily. ScienceDaily, 22 November 2000. <www.sciencedaily.com/releases/2000/11/001120074608.htm>.
University Of North Carolina School Of Medicine. (2000, November 22). Cell Studies May Further Gene Therapy Prospects For Head And Neck Cancer. ScienceDaily. Retrieved October 20, 2014 from www.sciencedaily.com/releases/2000/11/001120074608.htm
University Of North Carolina School Of Medicine. "Cell Studies May Further Gene Therapy Prospects For Head And Neck Cancer." ScienceDaily. www.sciencedaily.com/releases/2000/11/001120074608.htm (accessed October 20, 2014).

Share This



More Health & Medicine News

Monday, October 20, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Microneedle Patch Promises Painless Pricks

Microneedle Patch Promises Painless Pricks

Reuters - Innovations Video Online (Oct. 18, 2014) Researchers at The National University of Singapore have invented a new microneedle patch that could offer a faster and less painful delivery of drugs such as insulin and painkillers. Video provided by Reuters
Powered by NewsLook.com
Raw: Nurse Nina Pham Arrives in Maryland

Raw: Nurse Nina Pham Arrives in Maryland

AP (Oct. 17, 2014) The first nurse to be diagnosed with Ebola at a Dallas hospital walked down the stairs of an executive jet into an ambulance at an airport in Frederick, Maryland, on Thursday. Pham will be treated at the National Institutes of Health. (Oct. 16) Video provided by AP
Powered by NewsLook.com
Raw: Cruise Ship Returns to US Over Ebola Fears

Raw: Cruise Ship Returns to US Over Ebola Fears

AP (Oct. 17, 2014) A Caribbean cruise ship carrying a Dallas health care worker who is being monitored for signs of the Ebola virus is heading back to Texas, US, after being refused permission to dock in Cozumel, Mexico. (Oct. 17) Video provided by AP
Powered by NewsLook.com
Spanish Govt: Four Suspected Ebola Cases in Spain Test Negative

Spanish Govt: Four Suspected Ebola Cases in Spain Test Negative

AFP (Oct. 17, 2014) All four suspected Ebola cases admitted to hospitals in Spain on Thursday have tested negative for the deadly virus in a first round of tests, the government said Friday. Duration: 00:55 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins