Featured Research

from universities, journals, and other organizations

Chance Discovery Of "Immortal Skin" Holds Medical Promise

Date:
November 20, 2000
Source:
University Of Wisconsin-Madison
Summary:
From a routine study of the life span of human skin cells, a University of Wisconsin-Madison research project gave rise to an astonishing accident: A line of skin cells that simply wouldn't die. The research team witnessed a rare "spontaneous mutation" when a small cluster of cells in a petri dish continued to actively divide. The amazed scientists continued to grow this unique cell line over the course of a year without the cells showing any signs of slowing down.

MADISON - From a routine study of the life span of human skin cells, a University of Wisconsin-Madison research project gave rise to an astonishing accident: A line of skin cells that simply wouldn't die.

Related Articles


The research team witnessed a rare "spontaneous mutation" when a small cluster of cells in a petri dish continued to actively divide. The amazed scientists continued to grow this unique cell line over the course of a year without the cells showing any signs of slowing down.

Today, this laboratory anomaly has proven to be more than skin deep. The effort has grown into a patented product, a full-fledged commercial venture and a series of new medical research pursuits.

A new UW-Madison spin-off company called Stratatech, housed at University Research Park in Madison, is actively pursuing a number of markets for its patented "immortal human skin," including the prospect of much-needed tools for treatment of severe burn patients.

"There are a lot of opportunities dovetailing out of this single basic discovery that are very exciting," says Lynn Allen-Hoffmann, a professor of pathology in the UW-Madison Medical School and managing director of Stratatech.

"It would be a career dream come true to develop some kind of off-the-shelf product that would be available to doctors," she adds.

Clinical applications are several years away, but the company recently received promising news: Its first animal tests confirmed that the novel skin will cover and heal superficial wounds. Most importantly, Allen-Hoffmann says the cells grow into distinct stratified layers to become essentially no different from normal skin.

"That was the really big finding in all this, the critical piece of information we needed to prove," she says. "These cells proved to be incredibly normal."

The unique tissue is comprised entirely of keratinocyte cells, which make up the vast majority of human skin cells. Allen-Hoffmann says the cells can be genetically engineered to fit different medical or research needs.

Stratatech currently has contracts with a major cosmetics company to use the skin line for consumer products testing. By using the Stratatech product, the company can prove its products are safe for humans without the need for animal testing.

Another very promising market for the cell line, called NIKS (for Near-diploid Immortalized Keratinocyte Skin), is in drug discovery. Allen-Hoffmann says scientists can engineer different diseases of human skin, such as cancers or viral infections, and be able to test drugs within that "normal" tissue environment. Allen-Hoffmann's lab currently has studies under way using the NIKS cells to study skin cancer and effects of environmental toxicants such as dioxin.

But the technology's value to burn medicine may be most dramatic. That point was driven home for Allen-Hoffmann when she was invited to observe a grafting procedure at UW Hospital on a man who suffered third-degree burns on the majority of his body.

The surgeon, Michael Schurr of the UW Hospital Burn Center, wanted to illustrate how current methods are woefully inadequate. "It was an absolute epiphany for me," Allen-Hoffmann says. "I saw what little was available to him in terms of how he treats a patient like this. It was very humbling."

Schurr is an advisor to Stratatech and is also collaborating with Allen-Hoffmann on ongoing medical research projects. The need for burn treatment alternatives is acute, with more than 13,000 burn hospitalizations each year requiring extensive skin grafting.

A key milestone remains in proving the tissue would not be rejected by human patients, she says.

Stratatech has plans to move quickly toward possible medical uses, with clinical trials and work with regulatory agencies leading to initial human trials by 2002. Allen-Hoffmann says a number of basic research projects at UW-Madison and elsewhere also are likely to capitalize on this newfound ability to develop realistic models of human skin disease.

Allen-Hoffmann notes that what exactly happened to create these cells remains shrouded in mystery. They arose from a 1996 project in which her research team was studying aging of human skin. The skin used for the experiment was from discarded foreskin from a circumcision. Lab manager Sandy Schlosser, co-discoverer of the NIKS cells, noticed tiny cluster of cells emerged in a petri dish of dead skin cells and ultimately "wound-healed" across the entire dish.

The researchers know how these cells differ genetically, in that they have a duplication of one section of the long arm of chromosome eight. Beyond that, they are remarkably similar to the parent cells. But the group tried to regenerate the same cell line in experiments and were unable to do so.

Allen-Hoffman says these types of mutations are one in a million in science. There are only four other documented examples of "immortal" cells developing out of laboratory work, and all of those cases have caveats that limit their usefulness.

Operating out of rapidly filling space at the MGE Innovation Center, Stratatech now has a dozen employees and includes some of Allen-Hoffmann's graduate students who were part of the initial discovery. Her husband, UW-Madison oncology professor Michael Hoffmann, is director of business development and is researching cancer-related applications.


Story Source:

The above story is based on materials provided by University Of Wisconsin-Madison. Note: Materials may be edited for content and length.


Cite This Page:

University Of Wisconsin-Madison. "Chance Discovery Of "Immortal Skin" Holds Medical Promise." ScienceDaily. ScienceDaily, 20 November 2000. <www.sciencedaily.com/releases/2000/11/001120074912.htm>.
University Of Wisconsin-Madison. (2000, November 20). Chance Discovery Of "Immortal Skin" Holds Medical Promise. ScienceDaily. Retrieved December 20, 2014 from www.sciencedaily.com/releases/2000/11/001120074912.htm
University Of Wisconsin-Madison. "Chance Discovery Of "Immortal Skin" Holds Medical Promise." ScienceDaily. www.sciencedaily.com/releases/2000/11/001120074912.htm (accessed December 20, 2014).

Share This


More From ScienceDaily



More Health & Medicine News

Saturday, December 20, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

The Best Tips to Curb Holiday Carbs

The Best Tips to Curb Holiday Carbs

Buzz60 (Dec. 19, 2014) It's hard to resist those delicious but fattening carbs we all crave during the winter months, but there are some ways to stay satisfied without consuming the extra calories. Vanessa Freeman (@VanessaFreeTV) has the details. Video provided by Buzz60
Powered by NewsLook.com
Sierra Leone Bikers Spread the Message to Fight Ebola

Sierra Leone Bikers Spread the Message to Fight Ebola

AFP (Dec. 19, 2014) More than 100 motorcyclists hit the road to spread awareness messages about Ebola. Nearly 7,000 people have now died from the virus, almost all of them in west Africa, according to the World Health Organization. Video provided by AFP
Powered by NewsLook.com
Researchers Test Colombian Village With High Alzheimer's Rates

Researchers Test Colombian Village With High Alzheimer's Rates

AFP (Dec. 19, 2014) In Yarumal, a village in N. Colombia, Alzheimer's has ravaged a disproportionately large number of families. A genetic "curse" that may pave the way for research on how to treat the disease that claims a new victim every four seconds. Duration: 02:42 Video provided by AFP
Powered by NewsLook.com
Double-Amputee Becomes First To Move Two Prosthetic Arms With His Mind

Double-Amputee Becomes First To Move Two Prosthetic Arms With His Mind

Buzz60 (Dec. 19, 2014) A double-amputee makes history by becoming the first person to wear and operate two prosthetic arms using only his mind. Jen Markham has the story. Video provided by Buzz60
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins