Featured Research

from universities, journals, and other organizations

Zeolite Technique Speeds Pesticide Decomposition In Water

Date:
November 29, 2000
Source:
University Of Maine
Summary:
A team of University of Maine chemists has reported that exposing pesticide-contaminated water to natural light and a mineral known as a zeolite can dramatically speed up the break down of the pesticide. The finding could be useful in developing technologies for protecting drinking water supplies or improving environmental quality.

A team of University of Maine chemists has reported that exposing pesticide-contaminated water to natural light and a mineral known as a zeolite can dramatically speed up the break down of the pesticide. The finding could be useful in developing technologies for protecting drinking water supplies or improving environmental quality.

Related Articles


Among the pesticides studied was malathion which has been shown to kill lobsters in laboratory studies by other researchers at UMaine and is suspected of being a contributing factor in the recent deaths of lobsters in Long Island Sound. Malathion had been sprayed in the New York area to control mosquitoes thought to be carrying the West Nile virus.

The team, led by Howard H. Patterson, professor of chemistry, reported its findings to the annual meeting of the American Chemical Society in August. Other scientists participating in the research are Sofian Kanan, a former Ph.D. student of Patterson's and currently a post-doctoral researcher in the Laboratory for Surface Science and Technology at UMaine, and Marsha C. Kanan, a master's student. Marsha Kanan is continuing research to determine if the zeolite technology can also speed decomposition of pesticides in gaseous form.

Zeolites are naturally occurring volcanic minerals. Because of their honeycomb structure, they can absorb other materials much as a sponge absorbs water. They are currently used in a variety of industrial processes and products such as cat litter, shoe deodorizers, and aquarium and pond filters.

In laboratory experiments at UMaine, the team tested insecticides that are commonly used in agriculture and have been detected in rivers and drinking water supplies in the United States. Each compound breaks down naturally in sunlight, but the decomposition process showed “astonishing increases in the rate of each reaction” when an A-type zeolite was present, the team reported.

The reaction rates for malathion, carbofuran and carbaryl were 35, 120 and 164 times faster respectively than the rates for those compounds when the zeolite was not present. Zeolites have well-defined pore and channel structures, and they work by capturing pesticide molecules and enabling light to disrupt chemical bonds.

“It's important to find the zeolite with the right size channels and surface chemistry,” says Patterson. “You want it tailored to the size of the molecule that you want to break down. A pesticide molecule enters a zeolite channel and fits snuggly like a hand in a glove. When you expose it to light, a reaction occurs, and the pesticide molecule breaks apart.”

Sofian Kanan, a native of Jordan, came to the U.S. in 1996 after working as a teaching assistant at Yarmouk University in Amman. Marsha

Kanan is a native of Mechanic Falls, Maine and the recipient of a prestigious Congressionally authorized Goldwater Scholarship.

Zeolites are commonly used in the petroleum industry, but the UMaine team may be the first to study the technology for reducing pesticide concentrations in water, Patterson notes.

The decomposition process is consistent with a conceptual model proposed by Sofian Kanan, Patterson and other researchers to explain the break down of another compound in a zeolite. According to an article published this year in The Journal of Physical Chemistry B, light affects the chemical bonds that hold nitric oxide within a zeolite and lead to the release of oxygen and nitrogen gas.

The model predicts that compounds with a certain size and surface charge can be degraded by this method. Further laboratory observations have confirmed the model, they note.

Participating in the nitric oxide research were Mohammad A. Omary of UMaine and Masaya Matsuoka and Masakazu Anpo of the University of Osaka Prefecture in Japan.


Story Source:

The above story is based on materials provided by University Of Maine. Note: Materials may be edited for content and length.


Cite This Page:

University Of Maine. "Zeolite Technique Speeds Pesticide Decomposition In Water." ScienceDaily. ScienceDaily, 29 November 2000. <www.sciencedaily.com/releases/2000/11/001129075417.htm>.
University Of Maine. (2000, November 29). Zeolite Technique Speeds Pesticide Decomposition In Water. ScienceDaily. Retrieved November 28, 2014 from www.sciencedaily.com/releases/2000/11/001129075417.htm
University Of Maine. "Zeolite Technique Speeds Pesticide Decomposition In Water." ScienceDaily. www.sciencedaily.com/releases/2000/11/001129075417.htm (accessed November 28, 2014).

Share This


More From ScienceDaily



More Matter & Energy News

Friday, November 28, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

NASA's First 3-D Printer In Space Creates Its First Object

NASA's First 3-D Printer In Space Creates Its First Object

Newsy (Nov. 26, 2014) The International Space Station is now using a proof-of-concept 3D printer to test additive printing in a weightless, isolated environment. Video provided by Newsy
Powered by NewsLook.com
Bolivian Recycling Initiative Turns Plastic Waste Into School Furniture

Bolivian Recycling Initiative Turns Plastic Waste Into School Furniture

Reuters - Innovations Video Online (Nov. 26, 2014) Innovative recycling project in La Paz separates city waste and converts plastic garbage into school furniture made from 'plastiwood'. Tara Cleary reports. Video provided by Reuters
Powered by NewsLook.com
Blu-Ray Discs Getting Second Run As Solar Panels

Blu-Ray Discs Getting Second Run As Solar Panels

Newsy (Nov. 26, 2014) Researchers at Northwestern University are repurposing Blu-ray movies for better solar panel technology thanks to the discs' internal structures. Video provided by Newsy
Powered by NewsLook.com
Today's Prostheses Are More Capable Than Ever

Today's Prostheses Are More Capable Than Ever

Newsy (Nov. 26, 2014) Advances in prosthetics are making replacement body parts stronger and more lifelike than they’ve ever been. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins