Featured Research

from universities, journals, and other organizations

New Clue To Diagnosis And Treatment Of Malignant Melanoma

Date:
January 15, 2001
Source:
Cold Spring Harbor Laboratory
Summary:
Malignant melanoma is an aggressive, deadly cancer that does not respond to conventional chemotherapy. Other aggressive, chemoresistant cancers — and approximately half of all cancers — are characterized by mutations in the p53 tumor suppressor gene. Malignant melanomas, however, do not typically display mutations in the p53 gene. To explore alternative explanations for the origins and properties of malignant melanoma, and to identify potential targets and strategies for therapy, Scott Lowe and his colleagues at Cold Spring Harbor Laboratory have examined the status of other genes known to function downstream of p53 in a pathway leading to "apoptosis" or "programmed cell death."

Cold Spring Harbor, NY -- Malignant melanoma is an aggressive, deadly cancer that does not respond to conventional chemotherapy. Other aggressive, chemoresistant cancers — and approximately half of all cancers — are characterized by mutations in the p53 tumor suppressor gene. Malignant melanomas, however, do not typically display mutations in the p53 gene.

To explore alternative explanations for the origins and properties of malignant melanoma, and to identify potential targets and strategies for therapy, Scott Lowe and his colleagues at Cold Spring Harbor Laboratory have examined the status of other genes known to function downstream of p53 in a pathway leading to "apoptosis" or "programmed cell death." When intact, this pathway rids the body of abnormal, pre-cancerous cells by triggering a cellular self-destruct mechanism. When this pathway is disrupted (by the loss of p53 function, for example), pre-cancerous cells survive and proliferate resulting in cancer (see figure).

In a study to be published tomorrow in Nature, Lowe and his colleagues report that malignant melanomas often lose a key trigger of programmed cell death — a protein called Apaf-1 (apoptosis activation factor-1). The researchers also discovered that the loss of Apaf-1 in melanoma cells is associated with resistance to the chemotherapy drug adriamycin. Most significantly, the study shows that restoring Apaf-1 in melanoma cells rescues the ability of these tumor cells to kill themselves in response to adriamycin.

"The loss of Apaf-1 in malignant melanoma is a prime explanation for both the extreme chemoresistance and the apparent lack of p53 defects in such cancers," says Lowe.

The study is significant because it demonstrates that accurate diagnosis and treatment of malignant melanoma, and perhaps other cancers, should include an assessment of the status of Apaf-1.

Maria Soengas of Cold Spring Harbor Laboratory was the principal author of the study. The principal collaborators in the study were William L. Gerald and Carlos Cordon-Cardo of Memorial Sloan-Kettering Cancer Center.

An intriguing aspect of the study relates to the mechanisms that cause the loss of Apaf-1 in melanomas. The researchers were not surprised to find that one of the two copies of the Apaf-1 gene was deleted in many of the melanomas they examined (a well-known phenomenon called "loss of heterozygosity"). However, the other Apaf-1 gene copy in these cells was present and apparently normal in terms of its DNA sequence. Interestingly, Lowe and his colleagues found that complete loss of Apaf-1 was due to "transcriptional silencing" of the remaining, normal copy of the Apaf-1 gene in melanomas. Transcriptional silencing, or the suppression of gene expression due to higher order chromatin structure, is emerging as a principle mechanism whereby Apaf-1 and other tumor suppressor genes can be inactivated, resulting in cancer when other copies of such genes are lost, mutated, or similarly silenced.

Scott Lowe is a Professor at Cold Spring Harbor Laboratory and Deputy Director of the Cold Spring Harbor Laboratory Cancer Center. Other scientists from Memorial Sloan-Kettering Cancer Center (Paolo Capodieci, David Polsky, Jaume Mora), Johns Hopkins University and Oncology Center (Manel Esteller, James G. Herman), and Cold Spring Harbor Laboratory (Ximena Opitz-Araya, W. Richard McCombie, Yuri A. Lazebnik) contributed to the study.


Story Source:

The above story is based on materials provided by Cold Spring Harbor Laboratory. Note: Materials may be edited for content and length.


Cite This Page:

Cold Spring Harbor Laboratory. "New Clue To Diagnosis And Treatment Of Malignant Melanoma." ScienceDaily. ScienceDaily, 15 January 2001. <www.sciencedaily.com/releases/2001/01/010111075020.htm>.
Cold Spring Harbor Laboratory. (2001, January 15). New Clue To Diagnosis And Treatment Of Malignant Melanoma. ScienceDaily. Retrieved August 29, 2014 from www.sciencedaily.com/releases/2001/01/010111075020.htm
Cold Spring Harbor Laboratory. "New Clue To Diagnosis And Treatment Of Malignant Melanoma." ScienceDaily. www.sciencedaily.com/releases/2001/01/010111075020.htm (accessed August 29, 2014).

Share This




More Health & Medicine News

Friday, August 29, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Killer Amoeba Found in Louisiana Water System

Killer Amoeba Found in Louisiana Water System

AP (Aug. 28, 2014) State health officials say testing has confirmed the presence of a killer amoeba in a water system serving three St. John the Baptist Parish towns. (Aug. 28) Video provided by AP
Powered by NewsLook.com
Who Could Be Burnt by WHO's E-Cigs Move?

Who Could Be Burnt by WHO's E-Cigs Move?

Reuters - Business Video Online (Aug. 28, 2014) The World Health Organisation has called for the regulation of electronic cigarettes as both tobacco and medical products. Ciara Lee looks at the impact of the move on the tobacco industry. Video provided by Reuters
Powered by NewsLook.com
CDC Director On Ebola Outbreak: 'It's Worse Than I Feared'

CDC Director On Ebola Outbreak: 'It's Worse Than I Feared'

Newsy (Aug. 28, 2014) CDC director Tom Frieden says the Ebola outbreak is even worse than he feared. But he also said there's still hope to contain it. Video provided by Newsy
Powered by NewsLook.com
How A 'Rule Of Thumb' Could Slow Down Drinking

How A 'Rule Of Thumb' Could Slow Down Drinking

Newsy (Aug. 28, 2014) A study suggests people who follow a "rule of thumb" when pouring wine dispense less than those who don't have a particular amount in mind. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins