Featured Research

from universities, journals, and other organizations

Florida Researchers Make Gains Toward Practical Semiconductor Switch

Date:
February 16, 2001
Source:
University Of Florida
Summary:
A device taking shape in a University of Florida laboratory could lead to more reliable electricity, shoring up the nation's aging power grid at a time when deregulation and the other forces behind California's blackouts are steadily creeping into other states.

Gainesville, FL (Feb. 12, 2001) --- If you've ever lost a computer file when the power died, you know California isn't the only state with an electricity problem.

A device taking shape in a University of Florida laboratory could lead to more reliable electricity, shoring up the nation's aging power grid at a time when deregulation and the other forces behind California's blackouts are steadily creeping into other states.

In an article that appears today in "Applied Physics Letters," a leading physics journal, a team led by UF engineering researchers report building a device, known as a rectifier, that comes closer than ever before to meeting the requirements for a new kind of highly reliable electronic switch. Made out of a material called gallium nitride, the rectifier can withstand 10 kilovolts, a world record for the material and not far from the minimum of 13.8 kilovolts seen as required for the switch to become a possibility for residential power lines.

"We're not there yet, but we're within sight of our goal," said Stephen Pearton, a professor of materials science and engineering. "In another year or two, we should be able to get to the point where these switches are feasible."

Although it can be much higher, 13.8 kilovolts is the minimum amount of power transferred on residential lines. Today, that power is moved around using mechanical switches. When you get up in the morning and turn on the lights and coffee maker, these switches close, allowing more electricity to flow from the neighborhood line into your house. Other mechanical switches route power to the neighborhood and on to the power plant.

Mechanical switches have a number of problems. One is that as they open and close, they send electrical spikes down the line. While the spikes don't necessarily kick off the power, they may shut down computers and other electronics. That's why your computer sometimes shuts off but the lights remain on.

To avoid such spikes, or more serious outages, the power grid has to be operated below its rated capacity, Pearton said. That means it actually carries less electricity than it is capable of, a problem for power-starved areas such as California, he said.

Because they open and close nearly instantaneously, electronic or "solid state" switches would eliminate the spikes while allowing the grid to run at a higher power level.

"The utilities could run the systems more efficiently, so they could get closer to a blackout situation before it would become a disaster," Pearton said.

The switches wouldn't solve California's problems, but they would make it easier to get electricity to the state from elsewhere during emergencies.

"These switches could help with the blackouts," said Ben Damsky, an official with the Electric Power Research Institute, or EPRI, in Palo Alto, Calif. "By added use of such devices, it would be possible to send more power over longer distances and make even more remote generators accessible to California's lines."

The switches would also enable utilities to switch customers from a failing power source to a working source faster than possible today, leading to briefer outages, Damsky said. . Electronic switches exist now, but the material used in them, silicon, heats up, requiring a cooling system. That makes the switches expensive and impractical, Pearton said.

Besides making blackouts easier to combat, the switches could help ensure seamless, uninterrupted electricity, Damsky said. Such electricity is of vital importance to microchip plants and other industries that face millions of dollars in production losses from even brief outages. It is expected to be sold for a premium price in future electricity markets.

"We're looking to the kind of devices that Dr. Pearton and his colleagues are working on to make something ... commercially viable for a premium service," Damsky said.

EPRI and the Defense Advanced Research Projects Agency have funded the UF research with a three-year, $2.5 million grant.

The Microelectronics Center of North Carolina is a partner with UF in the research. Other researchers on the project include Fan Ren, a professor of chemical engineering and co-principal investigator on the project with Pearton; A.P. Zhang, J.W. Johnson and K.P. Lee, graduate students in the UF departments of chemistry and materials science and engineering; J. Han of Sandia National Laboratories; A.Y. Polyakov, N.B. Smirnov and A.V. Govorkov of the Institute of Rare Metals in Russia; and J.M. Redwing of the department of materials science engineering at Pennsylvania State University.


Story Source:

The above story is based on materials provided by University Of Florida. Note: Materials may be edited for content and length.


Cite This Page:

University Of Florida. "Florida Researchers Make Gains Toward Practical Semiconductor Switch." ScienceDaily. ScienceDaily, 16 February 2001. <www.sciencedaily.com/releases/2001/02/010213071633.htm>.
University Of Florida. (2001, February 16). Florida Researchers Make Gains Toward Practical Semiconductor Switch. ScienceDaily. Retrieved October 2, 2014 from www.sciencedaily.com/releases/2001/02/010213071633.htm
University Of Florida. "Florida Researchers Make Gains Toward Practical Semiconductor Switch." ScienceDaily. www.sciencedaily.com/releases/2001/02/010213071633.htm (accessed October 2, 2014).

Share This



More Matter & Energy News

Thursday, October 2, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Japan Looks To Faster Future As Bullet Train Turns 50

Japan Looks To Faster Future As Bullet Train Turns 50

Newsy (Oct. 1, 2014) Japan's bullet train turns 50 Wednesday. Here's a look at how it's changed over half a century — and the changes it's inspired globally. Video provided by Newsy
Powered by NewsLook.com
US Police Put Body Cameras to the Test

US Police Put Body Cameras to the Test

AFP (Oct. 1, 2014) Police body cameras are gradually being rolled out across the US, with interest surging after the fatal police shooting in August of an unarmed black teenager. Duration: 02:18 Video provided by AFP
Powered by NewsLook.com
Raw: Japan Celebrates 'bullet Train' Anniversary

Raw: Japan Celebrates 'bullet Train' Anniversary

AP (Oct. 1, 2014) A ceremony marking 50 years since Japan launched its Shinkansen bullet train was held on Wednesday in Tokyo. The latest model can travel from Tokyo to Osaka, a distance of 319 miles, in two hours and 25 minutes. (Oct. 1) Video provided by AP
Powered by NewsLook.com
Robotic Hair Restoration

Robotic Hair Restoration

Ivanhoe (Oct. 1, 2014) A new robotic procedure is changing the way we transplant hair. The ARTAS robot leaves no linear scarring and provides more natural results. Video provided by Ivanhoe
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins