Featured Research

from universities, journals, and other organizations

A Map For The Future: Fundamental Limit Defines Future Opportunities For Silicon Nanoelectronics

Date:
March 5, 2001
Source:
Georgia Institute Of Technology
Summary:
Electronics researchers have defined a fundamental limit that will help extend a half-century's progress in producing ever-smaller microelectronic devices for increasingly more powerful and less expensive computerized equipment.

Electronics researchers have defined a fundamental limit that will help extend a half-century's progress in producing ever-smaller microelectronic devices for increasingly more powerful and less expensive computerized equipment.

The fundamental limit defines the minimum amount of energy needed to perform the most basic computing operation: binary logic switching that changes a 0 to a 1 or vice-versa. This limit provides the foundation for determining a set of higher-level boundaries on materials, devices, circuits and systems that will define future opportunities for miniaturization advances possible through traditional microelectronics -- and its further extension to nanoelectronics.

"Future opportunities for gigascale integration (chips containing up to a billion devices) and even terascale integration (chips containing trillions of devices) will be governed by a hierarchy of physical limits," said James D. Meindl, professor of electrical and computer engineering and director of the Microelectronics Research Center at the Georgia Institute of Technology. "We now know the fundamental limit on microelectronics and where we are relative to it."

Meindl explained the limits and their implications on February 16 in a seminar on nanotechnology at the 167th annual meeting of the American Association for the Advancement of Science (AAAS) in San Francisco.

Meindl and collaborator Jeffrey A. Davis reported in the October issue of IEEE Journal of Solid State Circuits that the fundamental limit depends on just a single variable: the absolute temperature. Based on this fundamental limit, however, engineers can derive a hierarchy of limits that are much less absolute because they depend on assumptions about the operation of devices, circuits and systems.

The researchers studied the fundamental limit from two different perspectives: the minimum energy required to produce a binary transition that can be distinguished, and the minimum energy necessary for sending the resulting signal along a communications channel. The result was the same in both cases.

The fundamental limit, expressed as E(min) = (ln2)kT, was first reported 50 years ago by electrical engineer John von Neumann, who never provided an explanation for its derivation. (In this equation, T represents absolute temperature, k is Boltzmann's constant, and ln2 is the natural log of 2).

Though this fundamental limit provides the theoretical stopping point for electrical and computer engineers, Meindl says no future device will ever operate close to it. That's because device designers will first bump into the higher-level limits -- and economic realities.

For example, electronic signals can move through interconnects no faster than the speed of light. And quantum mechanical theory introduces uncertainties that would make devices smaller than a certain size impractical.

Beyond that is a more important issue -- devices operating at the fundamental limit would be wrong as often as they are right.

"The probability of making an error while operating at this fundamental limit of energy transfer in a binary transition is one-half," Meindl noted. "In other words, if you are operating just above the limit, you'll be right most of the time, but if you are operating just below it, you'd be wrong most of the time."

What does this mean for electronic and computer engineers?

"We can expect another 10 to 15 years of the exponential pace of the past 40 years in reducing cost per function, improving productivity and improving performance," Meindl said. "There will be lots of problems to solve and inventions that will be needed, just as they have over the past four decades."

He expects the world's use of silicon will follow the pattern set by its use of steel. During the second half of the 19th century, steel use increased exponentially as the world built its industrial infrastructure. Growth in steel demand fell after that, but it remains the backbone of world economies, though other materials increasingly challenge it.

"In the middle of the 21st century, we are going to be using more silicon than we are now, by far," he predicted. "There will be other materials that will come in to replace it, like plastics and aluminum came in to push steel out of certain applications. But we don't know yet what will replace silicon."

Though the limits provide a final barrier to innovation, Meindl believes economic realities will bring about the real end to advances in microelectronics.

"What has enabled the computer revolution so far is that the cost per function has continued to decrease," he said. "It is likely that after a certain point, we will not be able to continue to increase productivity. We may no longer be able to see investment pay off in reduced cost per function."

Beyond that point, designers will depend on nanotechnology for continuing advances in miniaturization.

"What happens next is what nanotechnology research is trying to answer," he said. "Work that is going on in nanotechnology today is trying to create a discontinuity and jump to a brand new science and technology base. Fundamental physical limits encourage the hypothesis that silicon technology provides a singular opportunity for exploration of nanoelectronics."

The research has been sponsored by the Advanced Research Projects Agency under Contract F33615-97-C1132, the Semiconductor Research Corporation under Contract HJ-374 and Georgia Institute of Technology.


Story Source:

The above story is based on materials provided by Georgia Institute Of Technology. Note: Materials may be edited for content and length.


Cite This Page:

Georgia Institute Of Technology. "A Map For The Future: Fundamental Limit Defines Future Opportunities For Silicon Nanoelectronics." ScienceDaily. ScienceDaily, 5 March 2001. <www.sciencedaily.com/releases/2001/02/010221071842.htm>.
Georgia Institute Of Technology. (2001, March 5). A Map For The Future: Fundamental Limit Defines Future Opportunities For Silicon Nanoelectronics. ScienceDaily. Retrieved July 28, 2014 from www.sciencedaily.com/releases/2001/02/010221071842.htm
Georgia Institute Of Technology. "A Map For The Future: Fundamental Limit Defines Future Opportunities For Silicon Nanoelectronics." ScienceDaily. www.sciencedaily.com/releases/2001/02/010221071842.htm (accessed July 28, 2014).

Share This




More Matter & Energy News

Monday, July 28, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Europe's Highest Train Turns 80 in French Pyrenees

Europe's Highest Train Turns 80 in French Pyrenees

AFP (July 25, 2014) Europe's highest train, the little train of Artouste in the French Pyrenees, celebrates its 80th birthday. Duration: 01:05 Video provided by AFP
Powered by NewsLook.com
TSA Administrator on Politics and Flight Bans

TSA Administrator on Politics and Flight Bans

AP (July 24, 2014) TSA administrator, John Pistole's took part in the Aspen Security Forum 2014, where he answered questions on lifting of the ban on flights into Israel's Tel Aviv airport and whether politics played a role in lifting the ban. (July 24) Video provided by AP
Powered by NewsLook.com
Creative Makeovers for Ugly Cellphone Towers

Creative Makeovers for Ugly Cellphone Towers

AP (July 24, 2014) Mobile phone companies and communities across the country are going to new lengths to disguise those unsightly cellphone towers. From a church bell tower to a flagpole, even a pencil, some towers are trying to make a point. (July 24) Video provided by AP
Powered by NewsLook.com
Algonquin Power Goes Activist on Its Target Gas Natural

Algonquin Power Goes Activist on Its Target Gas Natural

TheStreet (July 23, 2014) When The Deal's Amanda Levin exclusively reported that Gas Natural had been talking to potential suitors, the Ohio company responded with a flat denial, claiming its board had not talked to anyone about a possible sale. Lo and behold, Canadian utility Algonquin Power and Utilities not only had approached the company, but it did it three times. Its last offer was for $13 per share as Gas Natural's was trading at a 60-day moving average of about $12.50 per share. Now Algonquin, which has a 4.9% stake in Gas Natural, has taken its case to shareholders, calling on them to back its proposals or, possibly, a change in the target's board. Video provided by TheStreet
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins