Featured Research

from universities, journals, and other organizations

NASA Research Simulates How Cold Stars Stay In Shape

Date:
March 21, 2001
Source:
NASA/Jet Propulsion Laboratory
Summary:
In research with the potential to help study stars and improve space navigation, scientists have successfully used lasers to cool a cloud of lithium atoms sufficiently to observe unusual quantum properties of matter. Although current technology does not permit humans to travel to the stars, scientists can create a simulated star laboratory on Earth.

In research with the potential to help study stars and improve space navigation, scientists have successfully used lasers to cool a cloud of lithium atoms sufficiently to observe unusual quantum properties of matter. Although current technology does not permit humans to travel to the stars, scientists can create a simulated star laboratory on Earth.

Related Articles


The scientists, at Rice University in Houston, Texas, successfully simulated and photographed the process by which white dwarfs and neutron stars retain their size and shape, a mechanism called Fermi pressure. White dwarfs and neutron stars are dense, compact objects created when normal stars use up their fuel, cooling and succumbing to the forces of gravity.

"This not only increases our understanding of the basic laws of nature, but also lays the foundation for the development of far-reaching technologies for deep space navigation," said Dr. Kathie Olsen, acting associate administrator for Biological and Physical Research (BPR) at NASA Headquarters, Washington, D.C.

Fermi pressure, named for Dr. Enrico Fermi, a Nobel Laureate prominent for his contributions in nuclear physics, has been theorized as the star stabilization mechanism that keeps white dwarfs and neutron stars from collapsing further. NASA's Hubble Space Telescope and Chandra X-ray Observatory have observed such objects, but this is the first time Fermi pressure has been directly observed in an Earth laboratory. The research by the Rice team, led by Dr. Randall Hulet, was conducted under a grant from NASA's Biological and Physical Research Program through NASA's Jet Propulsion Laboratory, Pasadena, Calif.

"Many quantum effects have been theorized in the past 70 years, but only in the most recent years have scientists been able to create laboratory environments sophisticated enough to systematically test them," said Dr. Mark Lee, BPR fundamental physics discipline scientist. "We are really elated and proud that this newly established NASA program has yielded results of such high significance."

The successful observation of Fermi pressure in the laboratory is the first step toward other advances, including improvements in atomic clocks, the most accurate of timekeepers. New clocks could be designed using these ultra- cold atoms so that the atoms collide less frequently, which would lead to even greater accuracy. More precise clocks would help digital communications systems and improve deep space navigation.

"Experimenting with Fermi pressure may also lead to the creation of a new type of superfluid from lithium," said Hulet, physics professor at Rice University. Superfluids, in which atoms flow without friction, are quantum systems very similar to superconductors, which have zero resistance to electrical current flow. This new super-cold system of atoms could provide scientists a new testbed for theories of superconductivity and shows promise in solving some of the world's energy problems.

Hulet's team cooled lithium to less than one-fourth of a millionth of a degree above absolute zero. Absolute zero is the point at which scientists believe there can be no further cooling. At these ultra-low temperatures, the researchers were able to view and photograph two stable lithium isotopes, identical except for the number of neutrons they contain. They were thus able to demonstrate the star-stabilizing pressure. However, on Earth this type of research is hampered by gravity. The microgravity environment on the International Space Station, when it is completed, will eventually serve as an ideal location to study the transition to a superfluid.

Hulet co-authored the quantum experiment paper, which appears in the March 30 issue of the journal Science, with Rice University post-doctoral scientist Dr. Andrew Truscott, graduate students Kevin Strecker and Guthrie Partridge, and Dr. William McAlexander, now with Agilent Laboratories, Palo Alto, Calif. More information on the experiment and the BPR Fundamental Physics Program can be found at the following Web sites:

http://atomcool.rice.edu

http://spaceresearch.nasa.gov

http://funphysics.jpl.nasa.gov

Hulet's research was funded by NASA, the Office of Naval Research, the National Science Foundation, and the R.A. Welch Foundation. JPL manages the Fundamental Physics in Microgravity Research Program for NASA's Office of Biological and Physical Research, Washington, DC. JPL is a division of the California Institute of Technology in Pasadena.


Story Source:

The above story is based on materials provided by NASA/Jet Propulsion Laboratory. Note: Materials may be edited for content and length.


Cite This Page:

NASA/Jet Propulsion Laboratory. "NASA Research Simulates How Cold Stars Stay In Shape." ScienceDaily. ScienceDaily, 21 March 2001. <www.sciencedaily.com/releases/2001/03/010313074844.htm>.
NASA/Jet Propulsion Laboratory. (2001, March 21). NASA Research Simulates How Cold Stars Stay In Shape. ScienceDaily. Retrieved October 30, 2014 from www.sciencedaily.com/releases/2001/03/010313074844.htm
NASA/Jet Propulsion Laboratory. "NASA Research Simulates How Cold Stars Stay In Shape." ScienceDaily. www.sciencedaily.com/releases/2001/03/010313074844.htm (accessed October 30, 2014).

Share This



More Space & Time News

Thursday, October 30, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Raw: Antares Liftoff Explosion

Raw: Antares Liftoff Explosion

AP (Oct. 29, 2014) Observers near Wallops Island recorded what they thought would be a routine rocket launch Tuesday night. What they recorded was a major rocket explosion shortly after lift off. (Oct 29) Video provided by AP
Powered by NewsLook.com
Raw: Russian Cargo Ship Docks at Space Station

Raw: Russian Cargo Ship Docks at Space Station

AP (Oct. 29, 2014) Just hours after an American cargo run to the International Space Station ended in flames, a Russian supply ship has arrived at the station with a load of fresh supplies. (Oct. 29) Video provided by AP
Powered by NewsLook.com
Journalist Captures Moment of Antares Rocket Explosion

Journalist Captures Moment of Antares Rocket Explosion

Reuters - US Online Video (Oct. 29, 2014) A space education journalist is among those who witness and record the explosion of an unmanned Antares rocket seconds after its launch. Rough Cut (no reporter narration) Video provided by Reuters
Powered by NewsLook.com
Rocket Explosion Under Investigation

Rocket Explosion Under Investigation

AP (Oct. 28, 2014) NASA and Orbital Sciences officials say they are investigating the explosion of an unmanned commercial supply rocket bound for the International Space Station. It blew up moments after liftoff Tuesday evening over the launch site in Virginia. (Oct. 28) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

    Environment News

    Technology News



    Save/Print:
    Share:

    Free Subscriptions


    Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

    Get Social & Mobile


    Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

    Have Feedback?


    Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
    Mobile: iPhone Android Web
    Follow: Facebook Twitter Google+
    Subscribe: RSS Feeds Email Newsletters
    Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins