Featured Research

from universities, journals, and other organizations

Faster Nanowires May Advance Nanotechnological Applications For Detecting Glucose, Hormones Or DNA

Date:
March 22, 2001
Source:
Stanford University
Summary:
Teeny-tiny wires capable of connecting with the kinds of molecules that make up the human body could be building blocks for what may be among the first nanotechnology applications: biological sensors for detecting glucose levels in diabetics, measuring hormone levels in menopausal women or identifying DNA at crime scenes.

Teeny-tiny wires capable of connecting with the kinds of molecules that make up the human body could be building blocks for what may be among the first nanotechnology applications: biological sensors for detecting glucose levels in diabetics, measuring hormone levels in menopausal women or identifying DNA at crime scenes.

Related Articles


Stanford chemists have taken an important step toward making such wires by synthesizing a material that conducts electricity faster and farther than earlier designs.

In the Feb. 23 issue of the journal Science, chemistry Associate Professor Christopher Chidsey, graduate students Stephen P. Dudek and Hadley Sikes, and several scientists from Brookhaven National Laboratory report the synthesis of organic molecules that conduct electricity about twice as far as the best such wires previously tested, and at least 3,000 times faster. The so-called "nanowires" made of oligophenylenevinylene, or OPV, are about 50,000 times shorter than a human hair is wide.

The Chidsey lab's earlier attempts to make nanowires produced a substance called oligophenyleneelthynylene, or OPE, which conducts electricity pretty well for about 3 nanometers (billionths of a meter). For practical applications, though, nanowires may need to conduct electricity farther. That's why Chidsey looked for a new material.

Chidsey and his students suspected that OPE's structure was not ideal for conducting electricity because it tends to twist, preventing easy movement of electrons. OPV, on the other hand, is nearly flat, with electrons in a cloud above and below the plane. Its planar structure may explain why OPV conducts electricity so much better than OPE.

To make the wires, Dudek strung single units of OPV into 1 to 5 unit chains that were about 1 to about 4 nanometers long. At one end of the wire is a sulfur atom that can stick to a gold plate. At the other end is an iron-laden molecule capable of giving and receiving electrons.

In a biological application, the end holding the iron would instead hold, say, an enzyme or piece of DNA capable of reacting with similar molecules in our bodies. The reaction would then cause a current to run through the wire to a computer chip. Dudek hopes to try detecting electrical changes in simple biological molecules as soon as this summer.

Although Chidsey's lab is not pursuing practical applications for the nanowires, Dudek envisions eventually attaching bits of DNA to the ends of the wires. Blood samples from a crime scene then could be exposed to the wires, where DNA in the blood would bind to corresponding pieces on the wires, sending an electrical signal to a computer chip that could determine whether the DNA is a good match for a particular suspect.

But such applications are far from reality yet because handling nanowires is not at all like handling ordinary electrical wires. This is chemistry: The wires are in solution and they are poured onto the gold plate where the sulfur end sticks, forming a single, invisible layer.

"It's like seaweed on a seafloor," Dudek says. "The wires are all aligned." By changing the electrical potential in the gold plate, Dudek can observe a current going through all the wires.

To measure the extraordinarily fast speeds at which OPV conducts electrons, Hadley Sikes, also a graduate student in Chidsey's lab, took the nanowires to Brookhaven. She found that electrons move across the smallest OPV wires in about 20 picoseconds. This is really fast equivalent to about 340 miles per hour.

Electricity moves through nanowires very differently from ordinary electrical wires. "If you add electrons to a typical metal wire, a domino effect moves them along the wire until they dump out the other end," says Chidsey. The electrons in metal wire move at a constant speed as they bump each other across the wire. Cut the length of a metal wire in half and it will take half as long for electrons to pass through it.

But organic nanowires don't conduct electricity that way. The rate of speed increases exponentially as the wires get shorter. For example, a 3-nanometer wire of OPV would conduct 950 times faster than a wire that's twice as long. That's because instead of bumping each other across the wire domino style, electrons "tunnel" through nanowires. When they tunnel, electrons bypass barriers they normally would not be able to climb without violating the law of conservation of energy. The chance they'll make it through to the other side drops exponentially with distance.

The OPV nanowire allows tunneling to occur relatively easily. In computer chips, tunneling is mostly a bad thing, Chidsey says: When electrons tunnel through a thin insulator around a circuit, they may cause it to short out. "I'm interested in seeing if we can understand and get control over tunneling through molecules," he says. And if he succeeds, tunneling may get a better reputation in electronics, as it may be harnessed for moving electrons between nanostructures.


Story Source:

The above story is based on materials provided by Stanford University. Note: Materials may be edited for content and length.


Cite This Page:

Stanford University. "Faster Nanowires May Advance Nanotechnological Applications For Detecting Glucose, Hormones Or DNA." ScienceDaily. ScienceDaily, 22 March 2001. <www.sciencedaily.com/releases/2001/03/010316073033.htm>.
Stanford University. (2001, March 22). Faster Nanowires May Advance Nanotechnological Applications For Detecting Glucose, Hormones Or DNA. ScienceDaily. Retrieved December 19, 2014 from www.sciencedaily.com/releases/2001/03/010316073033.htm
Stanford University. "Faster Nanowires May Advance Nanotechnological Applications For Detecting Glucose, Hormones Or DNA." ScienceDaily. www.sciencedaily.com/releases/2001/03/010316073033.htm (accessed December 19, 2014).

Share This


More From ScienceDaily



More Matter & Energy News

Friday, December 19, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Navy Unveils Robot Fish

Navy Unveils Robot Fish

Reuters - Light News Video Online (Dec. 18, 2014) The U.S. Navy unveils an underwater device that mimics the movement of a fish. Tara Cleary reports. Video provided by Reuters
Powered by NewsLook.com
3D Printed Cookies Just in Time for Christmas

3D Printed Cookies Just in Time for Christmas

Reuters - Innovations Video Online (Dec. 18, 2014) A tech company in Spain have combined technology with cuisine to develop the 'Foodini', a 3D printer designed to print the perfect cookie for Santa. Ben Gruber reports. Video provided by Reuters
Powered by NewsLook.com
First Etihad Superjumbo Flight in December

First Etihad Superjumbo Flight in December

AFP (Dec. 18, 2014) The first flight of Etihad Airways' long-awaited Airbus A380 superjumbo will take place later in December, the Abu Dhabi carrier said Thursday, also announcing its first Boeing 787 Dreamliner route. Duration: 01:09 Video provided by AFP
Powered by NewsLook.com
Ford Expands Air Bag Recall Nationwide

Ford Expands Air Bag Recall Nationwide

Newsy (Dec. 18, 2014) The automaker added 447,000 vehicles to its recall list, bringing the total to more than 502,000. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins