Featured Research

from universities, journals, and other organizations

New Form Of Nitrogen: A Semiconductor

Date:
May 10, 2001
Source:
National Science Foundation
Summary:
Scientists at the Carnegie Institution of Washington reported today they have created a new form of nitrogen by subjecting ordinary nitrogen gas, which makes up about 75 percent of the earth's atmosphere, to pressures of up to 2.4 million times the atmospheric pressure at sea level. At these pressures the nitrogen is transformed to an opaque, semiconducting solid.

Scientists at the Carnegie Institution of Washington reported today they have created a new form of nitrogen by subjecting ordinary nitrogen gas, which makes up about 75 percent of the earth's atmosphere, to pressures of up to 2.4 million times the atmospheric pressure at sea level. At these pressures the nitrogen is transformed to an opaque, semiconducting solid. The scientists also reported that, once created, the semiconducting solid can remain stable even when the pressure returns to normal.

The team, which is partially supported by the National Science Foundation (NSF) Division of Materials Research, publishes the results in the May 10 issue of Nature.

"The fact that the major portion of the air has been turned into a semiconducting solid and brought back to be stable at ambient pressure is an important breakthrough for us," said team leader Russell Hemley. Hemley and colleagues Mikhail Eremets, Ho-kwang Mao and Eugene Gregoryanz performed the research at Carnegie's Geophysical Laboratory, a core institution of the NSF's Science and Technology Center for High-Pressure Research.

This is the first time that scientists have been able to make electrical measurements on a condensed gas under such extreme high-pressure conditions.

The new, dense form of nitrogen stores a large amount of energy and could potentially serve as a new semiconducting material. Such a high-density material formed from light elements could account for part of the cores of large gas planets such as those in our own solar system.

For years, theorists have predicted that molecular nitrogen (N2 ) would become either a semiconductor or a metal if subjected to pressures on the order of a million atmospheres (100 gigapascals). A similar theory holds for gaseous hydrogen, which is expected to turn into solid metallic hydrogen under similarly high pressures. Solid metallic hydrogen has yet to be produced in the laboratory.

Previous experiments have been limited in the amount of pressure that could be applied to nitrogen, and in the number of measurements that could be performed on the material while under pressure. Last year, the Carnegie scientists reported signs of the material's transformation at room temperature, using optical techniques alone.

In their recent experiment, the investigators used newly developed techniques that allowed them to measure electrical conductivity at very high pressures and various temperatures. They found that the non-molecular semiconducting form of nitrogen was stable over a remarkably wide pressure range, and some samples - when held at low temperature - even retained this state when decompressed to atmospheric pressure.

The observations of the new from of nitrogen suggest that other novel high-density materials--perhaps even solid metallic hydrogen--could be created at high pressure and recovered at ambient pressure conditions. Equally important, this work confirms theories that have been used to predict new properties such as high-temperature superconductivity in metallic hydrogen.

NSF is an independent federal agency which supports fundamental research and education across all fields of science and engineering, with an annual budget of about $4.5 billion. NSF funds reach all 50 states, through grants to about 1,800 universities and institutions nationwide. Each year, NSF receives about 30,000 competitive requests for funding, and makes about 10,000 new funding awards.


Story Source:

The above story is based on materials provided by National Science Foundation. Note: Materials may be edited for content and length.


Cite This Page:

National Science Foundation. "New Form Of Nitrogen: A Semiconductor." ScienceDaily. ScienceDaily, 10 May 2001. <www.sciencedaily.com/releases/2001/05/010510072220.htm>.
National Science Foundation. (2001, May 10). New Form Of Nitrogen: A Semiconductor. ScienceDaily. Retrieved October 23, 2014 from www.sciencedaily.com/releases/2001/05/010510072220.htm
National Science Foundation. "New Form Of Nitrogen: A Semiconductor." ScienceDaily. www.sciencedaily.com/releases/2001/05/010510072220.htm (accessed October 23, 2014).

Share This



More Matter & Energy News

Thursday, October 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Chameleon Camouflage to Give Tanks Cloaking Capabilities

Chameleon Camouflage to Give Tanks Cloaking Capabilities

Reuters - Innovations Video Online (Oct. 22, 2014) — Inspired by the way a chameleon changes its colour to disguise itself; scientists in Poland want to replace traditional camouflage paint with thousands of electrochromic plates that will continuously change colour to blend with its surroundings. The first PL-01 concept tank prototype will be tested within a few years, with scientists predicting that a similar technology could even be woven into the fabric of a soldiers' clothing making them virtually invisible to the naked eye. Matthew Stock reports. Video provided by Reuters
Powered by NewsLook.com
Jet Sales Lift Boeing Profit 18 Pct.

Jet Sales Lift Boeing Profit 18 Pct.

Reuters - Business Video Online (Oct. 22, 2014) — Strong jet demand has pushed Boeing to raise its profit forecast for the third time, but analysts were disappointed by its small cash flow. Fred Katayama reports. Video provided by Reuters
Powered by NewsLook.com
Internet of Things Aims to Smarten Your Life

Internet of Things Aims to Smarten Your Life

AP (Oct. 22, 2014) — As more and more Bluetooth-enabled devices are reaching consumers, developers are busy connecting them together as part of the Internet of Things. (Oct. 22) Video provided by AP
Powered by NewsLook.com
What Is Magic Leap, And Why Is It Worth $500M?

What Is Magic Leap, And Why Is It Worth $500M?

Newsy (Oct. 22, 2014) — Magic Leap isn't publicizing much more than a description of its product, but it’s been enough for Google and others to invest more than $500M. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins