Featured Research

from universities, journals, and other organizations

Blueprint Opens Doors For New Microphotonic Devices; Simple Design Has Potentially Far-Reaching Implications For Networking And Telecommunications

Date:
May 14, 2001
Source:
University Of Toronto
Summary:
Two University of Toronto physicists have spiralled a new twist out of the old subject of optics by creating a blueprint for a photonic crystal that paves the way for better, faster and perhaps unprecedented optical devices.

Two University of Toronto physicists have spiralled a new twist out of the old subject of optics by creating a blueprint for a photonic crystal that paves the way for better, faster and perhaps unprecedented optical devices.

Related Articles


In the May 11 issue of Science, University of Toronto physics professor Sajeev John and graduate student Ovidiu Toader report that they have created a blueprint of a three-dimensional photonic bandgap crystal that opens a new door for the development of devices like all-optical micro-transistors, optical wavelength converters and other components for optical microchips. They say it is a simple design that has potentially far-reaching implications for the networking and telecommunications industry.

"In terms of making a material that's three-dimensional with a large photonic bandgap, there's been a bottleneck in the field over the past 10 years," says John, who is also a Canada Research Chair holder. "Other types of designs or blueprints for large photonic bandgaps have been created but their production is so complex or time consuming that for all intents and purposes they are commercially unusable. Our blueprint can be mass-produced at a very low cost, and that's the crux of the matter."

Research institutions around the world have been pouring vast resources into photonics research. The reason: to break ground in new methods and materials that will help us control and manipulate light in ways similar to how semiconductor chips guide the flow of electrons. Light is currently used in fibre optic cable as a super-efficient transmitter of information; in concentrated form, it is also used as laser beams to perform delicate surgery or scan compact discs or bar codes. John and Toader's new blueprint allows optically based technology to be carried at the microscopic level.

The physicists say their design should come as a surprise to fellow scientists who didn't believe it was possible.

"People thought that to cover a broad wavelength range, photonic bandgap materials had to resemble a diamond lattice," explains Toader. "But diamond structures are very difficult to make because they have very intricate three-dimensional designs. In the past, scientists tried to mimic the diamond structure with something called the 'woodpile' structure - looking something like a stack of Lincoln logs - but they are extremely arduous to make. The structure must be grown one layer at a time, and after several years of work, they've only managed to grow about eight layers."

The photonic bandgap crystal design created by John and Toader is based on something called a tetragonal lattice, like a cubic lattice with spiralling posts that are stretched in one direction. They say it is much easier to make and can be done by a micro-fabrication technique known as glancing angle deposition (GLAD), which means growing the spiralling posts in a one step process.

"Photonic bandgap crystals can do most of the functions required in telecommunications," says John. "It allows you to control the flow of light through passive optical devices, but also create active devices that no one has ever made before like micro-transistors. This could affect not only telecommunications but also the computing industry."

John is one of the world's leading experts in photonics research. He is co-winner of the prestigious 2001 King Faisal International Prize for Science. This research was supported by the Natural Sciences and Engineering Research Council of Canada and the John Simon Guggenheim Foundation.


Story Source:

The above story is based on materials provided by University Of Toronto. Note: Materials may be edited for content and length.


Cite This Page:

University Of Toronto. "Blueprint Opens Doors For New Microphotonic Devices; Simple Design Has Potentially Far-Reaching Implications For Networking And Telecommunications." ScienceDaily. ScienceDaily, 14 May 2001. <www.sciencedaily.com/releases/2001/05/010511074228.htm>.
University Of Toronto. (2001, May 14). Blueprint Opens Doors For New Microphotonic Devices; Simple Design Has Potentially Far-Reaching Implications For Networking And Telecommunications. ScienceDaily. Retrieved December 20, 2014 from www.sciencedaily.com/releases/2001/05/010511074228.htm
University Of Toronto. "Blueprint Opens Doors For New Microphotonic Devices; Simple Design Has Potentially Far-Reaching Implications For Networking And Telecommunications." ScienceDaily. www.sciencedaily.com/releases/2001/05/010511074228.htm (accessed December 20, 2014).

Share This


More From ScienceDaily



More Matter & Energy News

Saturday, December 20, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Building Google Into Cars

Building Google Into Cars

Reuters - Business Video Online (Dec. 19, 2014) — Google's next Android version could become the standard that'll power your vehicle's entertainment and navigation features, Reuters has learned. Fred Katayama reports. Video provided by Reuters
Powered by NewsLook.com
AP Review: Nikon D750 and GoPro Hero 4

AP Review: Nikon D750 and GoPro Hero 4

AP (Dec. 19, 2014) — What to buy an experienced photographer or video shooter? There is some strong gear on the market from Nikon and GoPro. The AP's Ron Harris takes a closer look. (Dec. 19) Video provided by AP
Powered by NewsLook.com
Double-Amputee Becomes First To Move Two Prosthetic Arms With His Mind

Double-Amputee Becomes First To Move Two Prosthetic Arms With His Mind

Buzz60 (Dec. 19, 2014) — A double-amputee makes history by becoming the first person to wear and operate two prosthetic arms using only his mind. Jen Markham has the story. Video provided by Buzz60
Powered by NewsLook.com
Navy Unveils Robot Fish

Navy Unveils Robot Fish

Reuters - Light News Video Online (Dec. 18, 2014) — The U.S. Navy unveils an underwater device that mimics the movement of a fish. Tara Cleary reports. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins