Featured Research

from universities, journals, and other organizations

New U. Of Colorado Astronomy Study Indicates Planet Formation May Be Rare In Universe

Date:
June 6, 2001
Source:
University Of Colorado At Boulder
Summary:
The vast majority of wannabe planets in the universe are likely destroyed by cosmic forces long before they have a chance to evolve from dusty disks circling their parent stars, according to University of Colorado at Boulder researchers.

The vast majority of wannabe planets in the universe are likely destroyed by cosmic forces long before they have a chance to evolve from dusty disks circling their parent stars, according to University of Colorado at Boulder researchers.

Related Articles


Observations with the Hubble Space Telescope have shown that prolific planet- forming environments like the nearby Orion Nebula are fraught with peril, said CU-Boulder Professor John Bally. Orion, a giant stellar nursery thought to have spawned roughly 20,000 low-mass stars like the sun in the last 10 million years, also harbors a handful of massive type O and B stars that emit blowtorch-like radiation, destroying most pre-planetary disks in their vicinity.

Astronomers estimate only about 10 percent of young stars are born in environments shielded from such radiation, said Bally of CU-Boulder’s astrophysical and planetary sciences department. "Most stars appear to form in rich clusters in Orion-like environments where their planet-forming disks are eroded by the intense light."

To further complicate matters, nearly 90 percent of all young stars are thought to have companion siblings at birth as part of binary or multiple star systems, he said.

CU-Boulder Senior Research Associate Bo Reipurth of the APS department, who collaborates with Bally on several star formation projects, said such systems can contain one, two or three companion stars to the primary star, much like human twins, triplets and quadruplets. Even in the Orion Nebula, which has a star density about 1 million times that of so-called "field stars" like our sun, an estimated 60 percent of the young stars belong to binary or multiple star systems.

In such young systems, the stars orbit each other in elongated, eccentric and unstable circuits, occasionally passing very near each other. Such "orbital entanglements" can disturb circumstellar disks around young stars, cause the ejection of lower-mass sister stars from the region and even produce spectacular gaseous jets that shoot from the young stars, Reipurth said.

Every 10,000 years or so when binary stars become very close to each other, their circumstellar disk material is shaken up, triggering the accretion of more material and the production of gaseous jets by one of the stars, said Reipurth.

"Young stars, once thought to evolve slowly and steadily toward maturity, apparently suffer occasional catastrophes caused by nearby sibling stars," said Reipurth.

"There is a popular misconception that most stars have planets, and that solar systems abound in the universe," said Bally. "The reality seems to be that Earth’s solar system is a special place, and that we are lucky to be here."

The massive stars scattered throughout Orion-like star-forming systems not only destroy most circumstellar disks before they have a chance to evolve into rocky planets, but also strip hydrogen and helium from the system needed to form large gaseous planets, said Bally. "This implies our solar system may have formed far away from massive stars," said Bally. "Planetary systems like ours may be relatively rare."

To date, astronomers have found more than 60 giant planets around about 50 stars, he said. But these numbers indicate that fewer than 5 percent of the stars surveyed are orbited by giant planets.

Jupiter, the largest planet in our solar system, is thought to shield Earth from comets and asteroids by sweeping them away with its massive gravity. Such giant planets may be a prerequisite for the existence of safe planetary environments suitable for the evolution of life, said Bally.

The successful formation of large, gaseous planets remains a mystery, he said. "In order for giant planets to form in Orion-like regions, they must be assembled promptly by gravity," Bally said. "Such planets must accrete hydrogen and helium from their surroundings before the gases are removed."

This process must be completed in less than a few hundred thousand years in order to avoid the blowtorch destruction of pre-planetary matter by massive nearby stars, he said. The bottom line is that we are finding a number of formidable constraints to building planets and planetary systems in the universe," Bally said.


Story Source:

The above story is based on materials provided by University Of Colorado At Boulder. Note: Materials may be edited for content and length.


Cite This Page:

University Of Colorado At Boulder. "New U. Of Colorado Astronomy Study Indicates Planet Formation May Be Rare In Universe." ScienceDaily. ScienceDaily, 6 June 2001. <www.sciencedaily.com/releases/2001/06/010605075347.htm>.
University Of Colorado At Boulder. (2001, June 6). New U. Of Colorado Astronomy Study Indicates Planet Formation May Be Rare In Universe. ScienceDaily. Retrieved October 25, 2014 from www.sciencedaily.com/releases/2001/06/010605075347.htm
University Of Colorado At Boulder. "New U. Of Colorado Astronomy Study Indicates Planet Formation May Be Rare In Universe." ScienceDaily. www.sciencedaily.com/releases/2001/06/010605075347.htm (accessed October 25, 2014).

Share This



More Space & Time News

Saturday, October 25, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Raw: China Launches Moon Orbiter

Raw: China Launches Moon Orbiter

AP (Oct. 24, 2014) China launched an experimental spacecraft Friday to fly around the moon and back to Earth in preparation for the country's first unmanned return trip to the lunar surface. (Oct. 24) Video provided by AP
Powered by NewsLook.com
China Prepares Unmanned Mission To Lunar Orbit

China Prepares Unmanned Mission To Lunar Orbit

Newsy (Oct. 23, 2014) The mission is China's next step toward automated sample-return missions and eventual manned missions to the moon. Video provided by Newsy
Powered by NewsLook.com
Russian Cosmonauts Kick Off Final Spacewalk of 2014

Russian Cosmonauts Kick Off Final Spacewalk of 2014

Reuters - US Online Video (Oct. 22, 2014) Russian cosmonauts Maxim Suraev and Alexander Samokutyaev step outside the International Space Station to perform work on the exterior of the station's Russian module. Rough Cut (no reporter narration) Video provided by Reuters
Powered by NewsLook.com
Comet Siding Spring Grazes Mars' Atmosphere

Comet Siding Spring Grazes Mars' Atmosphere

Newsy (Oct. 19, 2014) A comet from the farthest reaches of the solar system passed extremely close to Mars this weekend, giving astronomers a rare opportunity to study it. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins