Featured Research

from universities, journals, and other organizations

Inhibitory Switch Found For Master Regulator Of Inflammation, Gladstone Researchers Report

Date:
August 31, 2001
Source:
University Of California - San Francisco
Summary:
Often called the “master regulator,” NF-kB is a protein that controls a whole host of important bodily functions including the key inflammatory and immune responses. Researchers at the Gladstone Institute of Virology and Immunology have now discovered a new pathway by which the cell regulates the activity of NF-kB, setting the stage for new therapeutic approaches.

Often called the “master regulator,” NF-kB is a protein that controls a whole host of important bodily functions including the key inflammatory and immune responses. Researchers at the Gladstone Institute of Virology and Immunology have now discovered a new pathway by which the cell regulates the activity of NF-kB, setting the stage for new therapeutic approaches.

Published in the August 31, 2001 issue of Science, the study unveils significant information about the much-studied NF-kB, which is central to many biological processes. NF-kB is known to be a transcription factor, a protein that jumpstarts the production of other proteins that go on to trigger inflammatory and immune responses. In order for NF-kB to be active, it must enter the nucleus where the DNA, the genetic blueprint for proteins, is located.

“These findings reveal a previously unknown mechanism by which this powerful transcription factor is regulated,” said Warner C. Greene, MD, PhD, senior author of the paper and director of the Gladstone Institute of Virology and Immunology.

The Gladstone scientists have shown that a chemical reaction called acetylation, whereby an acetyl molecule is attached to NF-kB, determines if NF-kB is active or not. When acetylated, NF-kB is active and resistant to the effects of an inhibitory protein called IkBa. However, once an enzyme called

HDAC3 deacetylates NF-kB, IkBa readily binds to NF-kB and causes the transcription factor to move out of the nucleus into the cytoplasm. HDAC3, then, becomes the “intranuclear molecular switch” that turns off the biological processes triggered by NF-kB. With more study, developing drugs that selectively promote the deaceytlation of NF-kB could be useful in treating a myriad of diseases. These include rheumatoid arthritis and chronic inflammatory bowel disease.

“These agents could form an exciting new class of anti-inflammatory drugs,” Greene said. The need for them is clear. Glucocorticoids, the most common anti-inflammatory drugs in clinical use today, are plagued with serious side effects, Greene said.

Immunosuppressive drugs, like cyclosporin A, have serious side effects too. Drugs based on the NF-kB deacetylation could help give an alternative to patients who have undergone organ transplants or who are suffering from systemic lupus erythematosus.

“We clearly need better anti-inflammatory drugs and superior approaches to immune suppression in the clinic,” said Greene, who is also a UCSF professor of medicine, microbiology and immunology. Since, NF-kB also plays a key role in the growth of many types of human cancer, these drugs might also exhibit anti-cancer activity.

Greene and his colleagues showed many years ago that when NF-kB was activated IkBa would degrade in the cytoplasm. However, more IkBa would soon be produced as NF-kB entered the nucleus and triggered the production of its own inhibitor, IkBa the current findings unveil how the cycle of acetylation and deacetylation controls the ability of these newly synthesized IkBa molecules to inhibit NF-kB. As an inhibitor, IkBa then limits the time in which NF-kB is able to act.

Other contributors to this study include Lin-feng Chen, PhD, postdoctoral fellow in Greene’s laboratory; Gladstone research associate Wolfgang Fischle, MS; and Gladstone senior investigator Eric Verdin, MD, UCSF professor of medicine. This study was funded by the Gladstone Institute of Virology and Immunology.

The Gladstone Institute of Virology and Immunology is one of three research institutes that comprise The J. David Gladstone Institutes, a private biomedical research institution affiliated with UCSF. The institution is named for a prominent real estate developer who died in 1971. His will created a testamentary trust that reflects his long-standing personal interest in medical education and research.


Story Source:

The above story is based on materials provided by University Of California - San Francisco. Note: Materials may be edited for content and length.


Cite This Page:

University Of California - San Francisco. "Inhibitory Switch Found For Master Regulator Of Inflammation, Gladstone Researchers Report." ScienceDaily. ScienceDaily, 31 August 2001. <www.sciencedaily.com/releases/2001/08/010831093115.htm>.
University Of California - San Francisco. (2001, August 31). Inhibitory Switch Found For Master Regulator Of Inflammation, Gladstone Researchers Report. ScienceDaily. Retrieved September 21, 2014 from www.sciencedaily.com/releases/2001/08/010831093115.htm
University Of California - San Francisco. "Inhibitory Switch Found For Master Regulator Of Inflammation, Gladstone Researchers Report." ScienceDaily. www.sciencedaily.com/releases/2001/08/010831093115.htm (accessed September 21, 2014).

Share This



More Health & Medicine News

Sunday, September 21, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Sierra Leone in Lockdown to Control Ebola

Sierra Leone in Lockdown to Control Ebola

AP (Sep. 21, 2014) Sierra Leone residents remained in lockdown on Saturday as part of a massive effort to confine millions of people to their homes in a bid to stem the biggest Ebola outbreak in history. (Sept. 20) Video provided by AP
Powered by NewsLook.com
Sierra Leone's Nationwide Ebola Curfew Underway

Sierra Leone's Nationwide Ebola Curfew Underway

Newsy (Sep. 20, 2014) Sierra Leone is locked down as aid workers and volunteers look for new cases of Ebola. Video provided by Newsy
Powered by NewsLook.com
Changes Found In Brain After One Dose Of Antidepressants

Changes Found In Brain After One Dose Of Antidepressants

Newsy (Sep. 19, 2014) A study suggest antidepressants can kick in much sooner than previously thought. Video provided by Newsy
Powered by NewsLook.com
Could Grief Affect The Immune Systems Of Senior Citizens?

Could Grief Affect The Immune Systems Of Senior Citizens?

Newsy (Sep. 19, 2014) The study found elderly people are much more likely to become susceptible to infection than younger adults going though a similar situation. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins