Featured Research

from universities, journals, and other organizations

"Imprinted" Gels Hold Promise For Future Medical Devices

Date:
September 4, 2001
Source:
Purdue University
Summary:
Scientists at Purdue University are creating a biological sensor for glucose in research that ultimately may help to design "intelligent drug delivery" devices that could be implanted in the body to administer medications such as insulin.

WEST LAFAYETTE, Ind. — Scientists at Purdue University are creating a biological sensor for glucose in research that ultimately may help to design "intelligent drug delivery" devices that could be implanted in the body to administer medications such as insulin.

The researchers formed a mesh-like "biomimetic" gel containing glucose molecules and then used a slightly acidic chemical to remove the glucose, leaving behind spaces where the glucose used to be. If placed in a liquid such as blood, glucose in the liquid diffuses into the gel and binds to the empty spaces. The gel is said to be "imprinted" for glucose molecules. Similar materials might be used in future medical devices to sense the presence of glucose, perhaps signaling an action to release insulin or other medications for diabetics, said chemical engineering doctoral student Mark Byrne.

"I'd be the first one to say that we have a lot of work to do, but our findings so far are very encouraging," said Byrne, who will discuss the work Tuesday (8/28) during the American Chemical Society's national meeting, Sunday through Thursday (8/26-30), in Chicago. The student is working with Nicholas A. Peppas, Purdue's Showalter Distinguished Professor of Chemical and Biomedical Engineering, and Kinam Park, a professor of pharmaceutics and biomedical engineering.

"There is a lot of interest in glucose sensing for diabetes research," Byrne said. "And that has been the main focus of this work. However, we are also working on systems that bind other molecules that are important for the treatment of other conditions.

"It's a tremendous task to design something that will eventually work in the human body."

The approach attempts to mimic how some molecules attach to "binding sites" on other molecules, similar to the way in which a key fits into a lock. Such binding is critical to various biological processes. Each binding site, however, must possess the proper shape and other characteristics for it to bind to a specific molecule.

The biomimetic gel contains numerous binding sites for glucose.

"Essentially, we are trying to design what nature has done so well, and that's a difficult thing to do," Byrne said. "We are creating artificial binding sites."

Artificial sensing mechanisms might one day be incorporated into medical devices implanted inside the body. The sensing mechanism would be part of a meshwork containing medications inside numerous microscopic cavities. Sensing glucose in the blood would automatically trigger the meshwork to expand, opening pores and releasing insulin or a medication that would enable the body to more efficiently absorb insulin.

"Ultimately, it would be nice to design something of this sort that would provide therapy for type one diabetes," Byrne said. "It would automatically sense when the glucose level was high, and then it would release an appropriate level of insulin. Then, whenever the glucose level went down again, the polymer gel would intelligently stop the release of insulin."

About 700,000 Americans suffer from insulin-dependent diabetes, also known as type one diabetes. People who have insulin-dependent diabetes must take insulin, either by injecting themselves with a needle at least twice a day or by using a battery-operated "insulin pump." The pump is worn outside the body, on a belt or in a pocket, and delivers a steady supply of insulin through a tube that connects to a needle placed under the skin.

Because insulin-dependent diabetes usually afflicts young people, it used to be called juvenile diabetes. About 12,000 children in the United States are diagnosed with the disorder every year.

The gels might be incorporated into a drug-dispensing system that receives signals from the sensors and then commands the meshwork to expand, releasing insulin. Another possibility is that the sensors themselves might directly command the meshwork to expand.

"The system would be sensitive to what is in the blood, and then, depending on what it sensed in the blood, would administer the right amount of drug," Byrne said.

Such applications probably will be at least five years in the future, researchers said.

An important aspect of the Purdue research is that the scientists have been able to make the gel with a non-toxic solvent and in water, meaning it would be compatible with the human body.

The gel is created by ultraviolet light, which causes molecules surrounding the glucose to form the binding sites. Then, the glucose is removed with an acidic chemical, leaving the empty, synthetic binding sites.

The research is supported by the National Institutes of Health, and the work is being conducted under the auspices of the recently formed Program in Therapeutic and Diagnostic Devices, which is supported by the National Science Foundation and directed by Peppas. The program brings together engineers from a broad range of backgrounds and expertise and was formed to train researchers in the field of biomedical devices, including artificial organs, biomaterials, controlled release devices and tissue-engineered materials.


Story Source:

The above story is based on materials provided by Purdue University. Note: Materials may be edited for content and length.


Cite This Page:

Purdue University. ""Imprinted" Gels Hold Promise For Future Medical Devices." ScienceDaily. ScienceDaily, 4 September 2001. <www.sciencedaily.com/releases/2001/09/010904072105.htm>.
Purdue University. (2001, September 4). "Imprinted" Gels Hold Promise For Future Medical Devices. ScienceDaily. Retrieved September 21, 2014 from www.sciencedaily.com/releases/2001/09/010904072105.htm
Purdue University. ""Imprinted" Gels Hold Promise For Future Medical Devices." ScienceDaily. www.sciencedaily.com/releases/2001/09/010904072105.htm (accessed September 21, 2014).

Share This



More Health & Medicine News

Sunday, September 21, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Sierra Leone's Nationwide Ebola Curfew Underway

Sierra Leone's Nationwide Ebola Curfew Underway

Newsy (Sep. 20, 2014) Sierra Leone is locked down as aid workers and volunteers look for new cases of Ebola. Video provided by Newsy
Powered by NewsLook.com
Changes Found In Brain After One Dose Of Antidepressants

Changes Found In Brain After One Dose Of Antidepressants

Newsy (Sep. 19, 2014) A study suggest antidepressants can kick in much sooner than previously thought. Video provided by Newsy
Powered by NewsLook.com
Could Grief Affect The Immune Systems Of Senior Citizens?

Could Grief Affect The Immune Systems Of Senior Citizens?

Newsy (Sep. 19, 2014) The study found elderly people are much more likely to become susceptible to infection than younger adults going though a similar situation. Video provided by Newsy
Powered by NewsLook.com
Jury Delivers Verdict in Salmonella Trial

Jury Delivers Verdict in Salmonella Trial

AP (Sep. 19, 2014) A federal jury has convicted three people in connection with an outbreak of salmonella poisoning five years ago that sickened hundreds of people and was linked to a number of deaths. (Sept. 19) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins