Featured Research

from universities, journals, and other organizations

Signals From Nervous System Influence Immune System, Study Shows

Date:
November 19, 2001
Source:
University Of California - San Francisco
Summary:
In a discovery that demonstrates a clear link between the mind and body at a molecular level, scientists have shown that a chemical signal which normally allows nerve cells to communicate with each other –to alter sleep cycles, for example -- can also re-direct actions of the immune system.

In a discovery that demonstrates a clear link between the mind and body at a molecular level, scientists have shown that a chemical signal which normally allows nerve cells to communicate with each other –to alter sleep cycles, for example -- can also re-direct actions of the immune system.

The research in mice confirms mounting evidence from studies of cultured cells that the nervous system directly influences the immune system. It has prompted new experiments to determine if the nerve-generated signal or its receptors in the immune system might make good drug targets to control asthma or allergies.

“This is the first clue of a practical pharmacological approach to using the nervous system for both improving immune defenses and damping harmful immune responses at their roots in diseases as diverse as arthritis and asthma,” said Edward Goetzl, MD, professor of medicine and immunology at the University of California, San Francisco.

Goetzl is lead author on a scientific paper on the research in the November 20 issue of the Proceedings of the National Academy of Sciences. The work is a collaboration between UCSF and the University of Edinburgh. Goetzl is also senior author on a companion paper on the research in FASEB Journal. (FASEB stands for the Federation of the American Societies for Experimental Biology.)

The finding is based on experiments with “knockout” mice whose immune cells can’t receive the normal neuropeptide signal known as vasoactive intestinal peptide, or VIP.

In the nervous system, VIP normally stimulates nerve cell signaling and survival, and regulates neural biological clocks. The scientists found that VIP also affects the migration of the immune system’s T cells and T cell secretion of protein signals for other immune cells, both of which are central to the body’s normal defense against infection. Through its action on T cells, VIP can affect the process in which the immune system turns against the body, such as in asthma and arthritis.

In the PNAS paper and in the companion paper in the FASEB Journal, the researchers showed that the strength of the VIP signal received by the T cells regulates the balance between two types of immune T cells, Th1 and Th2. Th1 is normally involved with protection from bacterial invasion and other defenses, but Th1 in excess can lead to autoimmune disorders. Th2 protects from parasitic infections and autoimmunity, but in excess can lead to allergies.

The researchers discovered the effect of VIP on the Th1/Th2 balance by examining the relative production of the Th cells’ protein products, known as cytokines. When the balance is tipped toward Th1 in knockout mice lacking a critical form of a VIP receptor, allergy is suppressed and resistance to some types of infections is boosted, along with other reactions, they found.

The research did not determine if the impact of the neuropeptide VIP is sufficient to change the course of infections, inflammation or autoimmune disease in which T cells are involved.

The researchers caution that VIP has such broad effects on immune function that blocking its action with drugs might risk triggering one kind of immune malady while it relieves another. However, the new findings clearly demonstrate the potential of neuroregulation of T cell functions and suggest the potential value of developing VIP-like drugs with greater immune selection than VIP itself, Goetzl added.

Senior author on the PNAS paper is Anthony Harmar, PhD, professor of neurosciences at University of Edinburgh. Co-authors are post-doctoral fellows Julia K Voice, PhD, and Glenn Dorsam, PhD, in the UCSF medicine and immunology departments; and Yvonne Kong, research assistant in the same departments. Also on the study are post-doctoral fellows Sanbing Shen, PhD; Katrine M. West, PhD; and Christine F. Morrison, PhD, all at University of Edinburgh.

The research was funded by the National Institutes of Health and the Medical Research Council of the United Kingdom.


Story Source:

The above story is based on materials provided by University Of California - San Francisco. Note: Materials may be edited for content and length.


Cite This Page:

University Of California - San Francisco. "Signals From Nervous System Influence Immune System, Study Shows." ScienceDaily. ScienceDaily, 19 November 2001. <www.sciencedaily.com/releases/2001/11/011116064459.htm>.
University Of California - San Francisco. (2001, November 19). Signals From Nervous System Influence Immune System, Study Shows. ScienceDaily. Retrieved August 23, 2014 from www.sciencedaily.com/releases/2001/11/011116064459.htm
University Of California - San Francisco. "Signals From Nervous System Influence Immune System, Study Shows." ScienceDaily. www.sciencedaily.com/releases/2001/11/011116064459.htm (accessed August 23, 2014).

Share This




More Health & Medicine News

Saturday, August 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Drug Used To Treat 'Ebola's Cousin' Shows Promise

Drug Used To Treat 'Ebola's Cousin' Shows Promise

Newsy (Aug. 21, 2014) An experimental drug used to treat Marburg virus in rhesus monkeys could give new insight into a similar treatment for Ebola. Video provided by Newsy
Powered by NewsLook.com
Two US Ebola Patients Leave Hospital Free of the Disease

Two US Ebola Patients Leave Hospital Free of the Disease

AFP (Aug. 21, 2014) Two American missionaries who were sickened with Ebola while working in Liberia and were treated with an experimental drug are doing better and have left the hospital, doctors say on August 21, 2014. Duration: 01:05 Video provided by AFP
Powered by NewsLook.com
Cadavers, a Teen, and a Medical School Dream

Cadavers, a Teen, and a Medical School Dream

AP (Aug. 21, 2014) Contains graphic content. He's only 17. But Johntrell Bowles has wanted to be a doctor from a young age, despite the odds against him. He was recently the youngest participant in a cadaver program at the Indiana University NW medical school. (Aug. 21) Video provided by AP
Powered by NewsLook.com
American Ebola Patients Released: What Cured Them?

American Ebola Patients Released: What Cured Them?

Newsy (Aug. 21, 2014) It's unclear whether the American Ebola patients' recoveries can be attributed to an experimental drug or early detection and good medical care. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins