Featured Research

from universities, journals, and other organizations

Hip Research: Making More Durable Artificial Joints

Date:
November 27, 2001
Source:
Case Western Reserve University
Summary:
Researchers at Case Western Reserve University and Exponent, a leading engineering and science-consulting firm in Philadelphia, are working to improve the wear and performance of artificial joints made of ultra-high molecular weight polyethylene. The team uses high-power computing techniques, advanced mathematical models, and load-bearing tests to investigate the performance of the plastic in total joint replacements and aims to uncover how the damage that occurs to the plastic progresses.

CLEVELAND -- Researchers at Case Western Reserve University and Exponent, a leading engineering and science-consulting firm in Philadelphia, are working to improve the wear and performance of artificial joints made of ultra-high molecular weight polyethylene. The team uses high-power computing techniques, advanced mathematical models, and load-bearing tests to investigate the performance of the plastic in total joint replacements and aims to uncover how the damage that occurs to the plastic progresses.

Related Articles


"Total hip replacement (THR) and total knee replacement (TKR) are orthopedic success stories which enable hundreds of thousands of people around the globe to live fuller, more active lives," said Clare Rimnac, director of the Musculoskeletal Mechanics and Materials Laboratories at CWRU and associate professor of mechanical and aerospace engineering at the Case School of Engineering. "Unfortunately, in some cases these joints wear out more rapidly than we would like," she added.

"Instead of implanting the joint and waiting to see what activities cause the material to fail, we're developing computer simulated models to give us that information," Rimnac said. "The ultimate goal of our research is to make it possible to predict the performance of new implant designs before they are implanted into patients."

A normally active person will load and unload a hip or knee joint by flexing and extending it between one million and three million times per year, Rimnac said. The force across the joint may vary from three times a person's body weight when simply standing to more than six times body weight when climbing and descending stairs and jogging. "Imagine how much stress is put on the knee or hip of a 200-pound man," she said.

When the plastic is damaged, particles are released into the body, which may cause bone loss. Then, instead of having an implant that is well-fixed into the bone, the reaction to the debris leads to gaps in the bone which compromise the mechanical and structural integrity of the implant.

Using a mechanical testing machine, Rimnac's lab subjects sample pieces of the polyethylene to different loading conditions until the sample fails by fracture. The research team then studies how the samples deform and how cracks form and grow, developing a model of the plastic's behavior. They are conducting this research on several new formulations of the polyethylene that recently have been introduced in total hip replacements and that are being implanted into patients.

"Although these new polyethylene materials are already in clinical use, our goal is to provide better computational simulations of these joint replacements to identify potential design concerns associated with these new materials and to, in general, develop design strategies for improving the long-term performance of total joint replacements," said Rimnac.

Rimnac notes that these new formulations of polyethylene are of great clinical interest because research suggests that they are more resistant to wear than previous polyethylene formulations. With these new polyethylene materials, the long-term performance of implants may be extended because fewer wear particles will be released and there should be less bone loss.

Rimnac is working with Steven M. Kurtz, a principal engineer at Exponent, who serves as the co-principal investigator, and Jorgen Bergstrom, a co-investigator from Exponent's Natick, Massachusetts, office.

The CWRU laboratory is responsible for physical and mechanical testing of the polyethylene materials, while Exponent is supervising the computer simulations of the joint replacements and development of the mathematical relationships of the materials. The goal is to develop new analytical models for predicting the response of the plastic components of total joint replacements to a variety of clinically relevant loading conditions.

Rimnac's research is funded by a three-year, $750,000 grant from the National Institutes of Health's (NIH) National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMD). Exponent is a second performance site on this grant.


Story Source:

The above story is based on materials provided by Case Western Reserve University. Note: Materials may be edited for content and length.


Cite This Page:

Case Western Reserve University. "Hip Research: Making More Durable Artificial Joints." ScienceDaily. ScienceDaily, 27 November 2001. <www.sciencedaily.com/releases/2001/11/011127003258.htm>.
Case Western Reserve University. (2001, November 27). Hip Research: Making More Durable Artificial Joints. ScienceDaily. Retrieved October 24, 2014 from www.sciencedaily.com/releases/2001/11/011127003258.htm
Case Western Reserve University. "Hip Research: Making More Durable Artificial Joints." ScienceDaily. www.sciencedaily.com/releases/2001/11/011127003258.htm (accessed October 24, 2014).

Share This



More Matter & Energy News

Friday, October 24, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

3D Printed Instruments Make Sweet Music in Sweden

3D Printed Instruments Make Sweet Music in Sweden

Reuters - Innovations Video Online (Oct. 23, 2014) Students from Lund University's Malmo Academy of Music are believed to be the world's first band to all use 3D printed instruments. The guitar, bass guitar, keyboard and drums were built by Olaf Diegel, professor of product development, who says 3D printing allows musicians to design an instrument to their exact specifications. Matthew Stock reports. Video provided by Reuters
Powered by NewsLook.com
Chameleon Camouflage to Give Tanks Cloaking Capabilities

Chameleon Camouflage to Give Tanks Cloaking Capabilities

Reuters - Innovations Video Online (Oct. 22, 2014) Inspired by the way a chameleon changes its colour to disguise itself; scientists in Poland want to replace traditional camouflage paint with thousands of electrochromic plates that will continuously change colour to blend with its surroundings. The first PL-01 concept tank prototype will be tested within a few years, with scientists predicting that a similar technology could even be woven into the fabric of a soldiers' clothing making them virtually invisible to the naked eye. Matthew Stock reports. Video provided by Reuters
Powered by NewsLook.com
Jet Sales Lift Boeing Profit 18 Pct.

Jet Sales Lift Boeing Profit 18 Pct.

Reuters - Business Video Online (Oct. 22, 2014) Strong jet demand has pushed Boeing to raise its profit forecast for the third time, but analysts were disappointed by its small cash flow. Fred Katayama reports. Video provided by Reuters
Powered by NewsLook.com
Internet of Things Aims to Smarten Your Life

Internet of Things Aims to Smarten Your Life

AP (Oct. 22, 2014) As more and more Bluetooth-enabled devices are reaching consumers, developers are busy connecting them together as part of the Internet of Things. (Oct. 22) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins