Featured Research

from universities, journals, and other organizations

UCSD Researchers Identify Protein With Dual Role In Regulation Of Cellular Processes

Date:
December 4, 2001
Source:
University Of California - San Diego
Summary:
The unique dual-action role of a natural regulatory protein that controls cellular function has been described by researchers at the University of California, San Diego (UCSD) School of Medicine in a study published in the November 30, 2001 issue of the journal Science.

The unique dual-action role of a natural regulatory protein that controls cellular function has been described by researchers at the University of California, San Diego (UCSD) School of Medicine in a study published in the November 30, 2001 issue of the journal Science.

Related Articles


This is the first scientific evidence that links an important regulatory protein to both cell signaling (a complex cellular communication process) and membrane trafficking (the movement of substances through the cell’s outer membrane to targeted areas within the cell).

According to senior author Marilyn Farquhar, Ph.D., chair of UCSD’s Department of Cellular and Molecular Medicine, the findings are important to the scientific community because they link previously unconnected areas and offer new avenues of disease research.

“For example,” she added, “these findings offer potential targets for the development of new drugs to help people with heart failure, hormone imbalances and cancer, which are all linked to flaws in cell signaling or trafficking.”

In its cell-signaling role, RGS-PX1 regulates a molecular on-off switch called a G protein alpha (Ga) subunit, which is important for cellular processes that affect a variety of conditions such as normal heart beat, hormone secretion, and kidney function. When RGS-PX1is present, the Ga subunit activity is turned off.

Bin Zheng, M.S., a graduate student in UCSD’s Molecular Pathology Graduate Program and the study’s first author, noted that RGS-PX1 also modulates trafficking within the cell, specifically the movement of cellular components called growth factor receptors, which influence cell growth and division.

In normal activity, when cell growth is completed, growth factor receptors cease their activity. RGS-PX1 delays the natural degradation of growth factor receptors and, instead, allows cells to continue to proliferate, such as in the growth of cancerous tumors.

“Now we need more studies to determine other molecules involved and how RGS-PX1 is activated in its regulation of cell signaling and growth factor trafficking,” Zheng said.

Farquhar likened it to the electrical circuits in a house where the current comes in one main circuit, then branches out to different rooms.

“Signaling circuits are like that,” she said. “Right now we’re in the family room, where we discovered the protein. We’re now trying to work our way back to the entry point where this is controlled, to better understand how and why RGS-PX1 gets activated.”

Found in yeast, plants and mammals, there are at least 20 RGS proteins that were first described by researchers about six years ago. The Farquhar team found one of the first RGS proteins and has continued their studies since then. About two years ago, Zheng found the RGS-PX1 protein while searching many of the new protein and DNA sequence databases, then determined its function with laboratory studies of various animal cells. The team named the protein RGS-PX1 to include both its roles: RGS for the G protein signaling function, and PX to signify its physical structure related to trafficking.

Additional authors of the study were Gordon Gill, M.D., professor and interim dean for scientific affairs, UCSD School of Medicine; Paul A. Insel, M.D., professor, and Rennolds S. Ostrom, Ph.D., post doctoral fellow, UCSD Department of Pharmacology; Christine Lavoie, Ph.D., assistant project pharmacologist, UCSD Department of Cellular and Molecular Medicine; and Yong-Chao Ma, Ph.D., post doctoral fellow and Xin-Yun Huang, Ph.D., professor, Department of Physiology, Weill Medical College of Cornell University.

The research was funded by the National Institutes of Health.


Story Source:

The above story is based on materials provided by University Of California - San Diego. Note: Materials may be edited for content and length.


Cite This Page:

University Of California - San Diego. "UCSD Researchers Identify Protein With Dual Role In Regulation Of Cellular Processes." ScienceDaily. ScienceDaily, 4 December 2001. <www.sciencedaily.com/releases/2001/11/011130074426.htm>.
University Of California - San Diego. (2001, December 4). UCSD Researchers Identify Protein With Dual Role In Regulation Of Cellular Processes. ScienceDaily. Retrieved October 24, 2014 from www.sciencedaily.com/releases/2001/11/011130074426.htm
University Of California - San Diego. "UCSD Researchers Identify Protein With Dual Role In Regulation Of Cellular Processes." ScienceDaily. www.sciencedaily.com/releases/2001/11/011130074426.htm (accessed October 24, 2014).

Share This



More Matter & Energy News

Friday, October 24, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Police Testing New Gunfire Tracking Technology

Police Testing New Gunfire Tracking Technology

AP (Oct. 24, 2014) A California-based startup has designed new law enforcement technology that aims to automatically alert dispatch when an officer's gun is unholstered and fired. Two law enforcement agencies are currently testing the technology. (Oct. 24) Video provided by AP
Powered by NewsLook.com
3D Printed Instruments Make Sweet Music in Sweden

3D Printed Instruments Make Sweet Music in Sweden

Reuters - Innovations Video Online (Oct. 23, 2014) Students from Lund University's Malmo Academy of Music are believed to be the world's first band to all use 3D printed instruments. The guitar, bass guitar, keyboard and drums were built by Olaf Diegel, professor of product development, who says 3D printing allows musicians to design an instrument to their exact specifications. Matthew Stock reports. Video provided by Reuters
Powered by NewsLook.com
NYPD Gives High Tech Anti-Terror Weapon to 41,000 Officers

NYPD Gives High Tech Anti-Terror Weapon to 41,000 Officers

Buzz60 (Oct. 23, 2014) New York City officials announce a new technology initiative for the NYPD. Tim Minton reports smartphones and tablets will be given to more than 40,000 NYPD officers and detectives in an effort to change the way they perform their duties. Video provided by Buzz60
Powered by NewsLook.com
Chameleon Camouflage to Give Tanks Cloaking Capabilities

Chameleon Camouflage to Give Tanks Cloaking Capabilities

Reuters - Innovations Video Online (Oct. 22, 2014) Inspired by the way a chameleon changes its colour to disguise itself; scientists in Poland want to replace traditional camouflage paint with thousands of electrochromic plates that will continuously change colour to blend with its surroundings. The first PL-01 concept tank prototype will be tested within a few years, with scientists predicting that a similar technology could even be woven into the fabric of a soldiers' clothing making them virtually invisible to the naked eye. Matthew Stock reports. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins