Featured Research

from universities, journals, and other organizations

Liquid Scintillator Neutrino Detector Strengthens Evidence For Neutrino Oscillations

Date:
December 5, 2001
Source:
Los Alamos National Laboratory
Summary:
A collaboration of university scientists and researchers working at Los Alamos National Laboratory has published the final paper from the Liquid Scintillator Neutrino Detector (LSND) experiment. The results, based on six years of data collection, strengthen previously published, but controversial LSND results and provide further evidence of neutrino oscillation and mass.

LOS ALAMOS, NM, - A collaboration of university scientists and researchers working at Los Alamos National Laboratory has published the final paper from the Liquid Scintillator Neutrino Detector (LSND) experiment. The results, based on six years of data collection, strengthen previously published, but controversial LSND results and provide further evidence of neutrino oscillation and mass.

The LSND data, collected from 1993 to 1998, suggest that muon anti-neutrinos oscillate into electron anti-neutrinos. Combined with other data on neutrino oscillations, the results indicate that neutrinos represent roughly one percent or more of the universe's total mass.

The LSND results, which will be published in Physical Review D on Dec. 1, are based on data collected at the Los Alamos Neutron Science Center accelerator. During the collection period from 1993-1998, LANSCE delivered 180 trillion-billion (180,000,000,000,000,000,000,000) protons to the LSND target, a tank filled with 167 tons of mineral oil (baby oil) and 14 pounds of organic scintillator. This oil/scintillator mixture allowed the detection of both Cerenkov light and scintillation light via 1220 light sensitive tubes and provided excellent particle identification.

Neutrino oscillations have been employed to explain the apparent deficit of solar electron-neutrinos and atmospheric muon-neutrinos. The solar and atmospheric experiments have been confirmed by other experiments, while the LSND remains uncomfirmed. An independent experiment is needed to prove whether the events observed by LSND are indeed due to neutrino oscillations. The MiniBooNE experiment, currently under construction at Fermilab, is designed to provide a definitive test of the LSND neutrino oscillation results, and if the results are verified, to make a precision measurements of the oscillation parameters.

Scientists find it difficult to explain the solar, atmospheric, and LSND results using only the three known neutrino types: the electron, muon, and tau neutrinos. This difficulty causes the LSND results to be controversial. It has been hypothesized that some unknown new phenomenon--such as a fourth 'sterile' neutrino with a much weaker interaction with matter than normal neutrinos or large extra dimensions with different neutrino masses--might explain the data. Such new phenomena would have an enormous impact on the standard model of particle physics and would have very broad implications for future research in the fields of nuclear physics, high-energy physics, and astrophysics.

###The LSND collaboration consists of physicists from the University of Alabama, University of California at Riverside, University of California at San Diego, University of California at Santa Barbara, Embry Riddle Aeronautical University, Indiana University, Los Alamos National Laboratory, Louisiana State University, Southern University, and Temple University.

Los Alamos National Laboratory is operated by the University of California for the U.S. Department of Energy's National Nuclear Security Administration.


Story Source:

The above story is based on materials provided by Los Alamos National Laboratory. Note: Materials may be edited for content and length.


Cite This Page:

Los Alamos National Laboratory. "Liquid Scintillator Neutrino Detector Strengthens Evidence For Neutrino Oscillations." ScienceDaily. ScienceDaily, 5 December 2001. <www.sciencedaily.com/releases/2001/12/011205065725.htm>.
Los Alamos National Laboratory. (2001, December 5). Liquid Scintillator Neutrino Detector Strengthens Evidence For Neutrino Oscillations. ScienceDaily. Retrieved October 22, 2014 from www.sciencedaily.com/releases/2001/12/011205065725.htm
Los Alamos National Laboratory. "Liquid Scintillator Neutrino Detector Strengthens Evidence For Neutrino Oscillations." ScienceDaily. www.sciencedaily.com/releases/2001/12/011205065725.htm (accessed October 22, 2014).

Share This



More Matter & Energy News

Wednesday, October 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Chameleon Camouflage to Give Tanks Cloaking Capabilities

Chameleon Camouflage to Give Tanks Cloaking Capabilities

Reuters - Innovations Video Online (Oct. 22, 2014) — Inspired by the way a chameleon changes its colour to disguise itself; scientists in Poland want to replace traditional camouflage paint with thousands of electrochromic plates that will continuously change colour to blend with its surroundings. The first PL-01 concept tank prototype will be tested within a few years, with scientists predicting that a similar technology could even be woven into the fabric of a soldiers' clothing making them virtually invisible to the naked eye. Matthew Stock reports. Video provided by Reuters
Powered by NewsLook.com
Jet Sales Lift Boeing Profit 18 Pct.

Jet Sales Lift Boeing Profit 18 Pct.

Reuters - Business Video Online (Oct. 22, 2014) — Strong jet demand has pushed Boeing to raise its profit forecast for the third time, but analysts were disappointed by its small cash flow. Fred Katayama reports. Video provided by Reuters
Powered by NewsLook.com
Internet of Things Aims to Smarten Your Life

Internet of Things Aims to Smarten Your Life

AP (Oct. 22, 2014) — As more and more Bluetooth-enabled devices are reaching consumers, developers are busy connecting them together as part of the Internet of Things. (Oct. 22) Video provided by AP
Powered by NewsLook.com
What Is Magic Leap, And Why Is It Worth $500M?

What Is Magic Leap, And Why Is It Worth $500M?

Newsy (Oct. 22, 2014) — Magic Leap isn't publicizing much more than a description of its product, but it’s been enough for Google and others to invest more than $500M. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins