Featured Research

from universities, journals, and other organizations

Damping The Flames: Inflammation Control Mechanism Determined

Date:
December 20, 2001
Source:
NIH/National Institute Of Allergy And Infectious Diseases
Summary:
After a decade of research, Michail Sitkovsky, Ph.D., and his coworkers at the National Institute of Allergy and Infectious Diseases (NIAID), may have answered one of the most perplexing questions in immunology: how the body limits inflammation.

After a decade of research, Michail Sitkovsky, Ph.D., and his coworkers at the National Institute of Allergy and Infectious Diseases (NIAID), may have answered one of the most perplexing questions in immunology: how the body limits inflammation. Their finding, that particular cell surface molecules sense runaway inflammation and tissue damage, appears in the Dec. 20 issue of the journal Nature.

Related Articles


Inflammation, tissue swelling usually accompanied by pain and heat, is the body's generic response to a host of insults: invasion by bacteria or viruses, injury, or reactions to one's own tissues. Within limits, inflammation is a valuable ally in the body's fight against invaders. But left unchecked, inflammation exposes a decidedly dangerous side. Chronic inflammation is characteristic of such disorders as asthma, chronic hepatitis, lupus and rheumatoid arthritis

Although many drugs lessen or halt inflammation, very little is known about the body's own mechanism for controlling inflammation and the tissue damage that accompanies it. "Clearly, there must be some way for the body to shout, 'Enough already! Stop the inflammation'," explains Dr. Sitkovsky. The shout, or signal, must be sensed and responded to so that inflammatory activity abates. "We wanted to learn what the signals and sensors are in living organisms," he says.

Adenosine and its membrane-bound receptor made attractive candidates for signal and sensor, Dr. Sitkovsky notes. A simple molecule that leads a busy life, adenosine is the core of the cell's energy-containing compound, ATP, and elevated levels of it in the brain appear to cause sleep. Despite its numerous roles throughout the body, adenosine has received little attention from immunologists, says Dr. Sitkovsky. "I was pursuing the idea that adenosine has some important function in the immune system, too," he says.

This much is known: when tissue damage mounts due to prolonged inflammation, oxygen levels in the damaged area fall. This in turn leads to increased amounts of adenosine outside cells. Dr. Sitkovsky theorized that the excess adenosine binds to the adenosine receptors, which then initiate a chain reaction that slows and eventually stops inflammation. Attractive as they are as candidates, adenosine and its receptor are just one of many signal-sensor pairs on the cell's surface. Any of these might also be the elusive inflammation-damping mechanism.

To prove the role of adenosine receptors in controlling inflammation, Dr. Sitkovsky turned to specific genetically engineered mice. These mice lack adenosine receptors, but are identical to normal mice in every other way. When exposed to various inflammatory stimuli (for example, a drug that mimics virus-induced liver damage), the receptor-deficient mice suffered extensive tissue damage and in some cases died, while normal mice were either unaffected or suffered minimal tissue damage. Further experiments revealed that no other receptor could substitute for the adenosine receptor. Mice lacking the critical molecular brake could not halt either organ-specific or body-wide inflammation.

"The discovery that adenosine receptors play a central physiologic role in limiting inflammation is an important conceptual advance," says William Paul, M.D., chief of NIAID's Laboratory of Immunology, where Dr. Sitkovsky conducts his research.

"It may help us find new ways to control excessive inflammation in a wide range of clinical situations. It may also allow us to develop new ways to enhance the inflammatory response, when that is desirable, to make better vaccines and anti-tumor drugs," Dr. Paul adds.

An additional, provocative finding emerged from Dr. Sitkovsky's recent work. When exposed to a caffeine-like substance, mice in the study had difficulty controlling acute inflammation. It has been known for many years that caffeine interferes with the adenosine receptor. If, in fact, adenosine receptors are needed for effective inflammation control, anything that hinders their function might impair the body's ability to regulate inflammation. Dr. Sitkovsky plans additional research to see if this possible caffeine-inflammation connection exists in humans as well.

NIAID is a component of the National Institutes of Health (NIH). NIAID supports basic and applied research to prevent, diagnose, and treat infectious and immune-mediated illnesses, including HIV/AIDS and other sexually transmitted diseases, tuberculosis, malaria, autoimmune disorders, asthma and allergies.


Story Source:

The above story is based on materials provided by NIH/National Institute Of Allergy And Infectious Diseases. Note: Materials may be edited for content and length.


Cite This Page:

NIH/National Institute Of Allergy And Infectious Diseases. "Damping The Flames: Inflammation Control Mechanism Determined." ScienceDaily. ScienceDaily, 20 December 2001. <www.sciencedaily.com/releases/2001/12/011220082153.htm>.
NIH/National Institute Of Allergy And Infectious Diseases. (2001, December 20). Damping The Flames: Inflammation Control Mechanism Determined. ScienceDaily. Retrieved October 25, 2014 from www.sciencedaily.com/releases/2001/12/011220082153.htm
NIH/National Institute Of Allergy And Infectious Diseases. "Damping The Flames: Inflammation Control Mechanism Determined." ScienceDaily. www.sciencedaily.com/releases/2001/12/011220082153.htm (accessed October 25, 2014).

Share This



More Health & Medicine News

Saturday, October 25, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Texas Nurse Nina Pham Cured of Ebola

Texas Nurse Nina Pham Cured of Ebola

AFP (Oct. 25, 2014) — An American nurse who contracted Ebola while caring for a Liberian patient in Texas has been declared free of the virus and will leave the hospital. Duration: 01:01 Video provided by AFP
Powered by NewsLook.com
Toxin-Packed Stem Cells Used To Kill Cancer

Toxin-Packed Stem Cells Used To Kill Cancer

Newsy (Oct. 25, 2014) — A Harvard University Research Team created genetically engineered stem cells that are able to kill cancer cells, while leaving other cells unharmed. Video provided by Newsy
Powered by NewsLook.com
IKEA Desk Converts From Standing to Sitting With One Button

IKEA Desk Converts From Standing to Sitting With One Button

Buzz60 (Oct. 24, 2014) — IKEA is out with a new convertible desk that can convert from a sitting desk to a standing one with just the push of a button. Jen Markham explains. Video provided by Buzz60
Powered by NewsLook.com
Ebola Protective Suits Being Made in China

Ebola Protective Suits Being Made in China

AFP (Oct. 24, 2014) — A factory in China is busy making Ebola protective suits for healthcare workers and others fighting the spread of the virus. Duration: 00:38 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins