Featured Research

from universities, journals, and other organizations

Researchers Closer To Defining Function Of Two Proteins Involved In Neurotransmitter Release

Date:
January 17, 2002
Source:
University Of Texas Southwestern Medical Center At Dallas
Summary:
Researchers at UT Southwestern Medical Center at Dallas are a step closer to defining the function of two proteins involved in neurotransmitter release, which initiates communication between neurons in the brain.

DALLAS – Researchers at UT Southwestern Medical Center at Dallas are a step closer to defining the function of two proteins involved in neurotransmitter release, which initiates communication between neurons in the brain.

Findings from the two-part study, published in today’s issue of Nature, provides new insight in understanding how the brain functions, which ultimately has broad implications for the development of drug therapy to treat neurological diseases such as Alzheimer’s and Parkinson’s, as well as learning and memory disorders.

“This is pure, fundamental research,” said Dr. Thomas Südhof, director of the Center for Basic Neuroscience at UT Southwestern and senior author of the first part of the study. “It is essential for understanding various diseases of the nervous system. The premise of our work is the understanding of neurotransmitter release, which is a necessity for understanding brain function and how the brain works.”

The researchers bred mice that lacked the brain proteins RIM1a or Rab3A. In part one of the study, the researchers report a change in short-term plasticity in the mice lacking the RIM1α protein compared to other types of mutant mice. In part two of the study, the researchers report a correlation between the RIM1a protein and long-term plasticity. The terms short- and long-term plasticity refer to changes that occur during neurotransmitter release.

“We found that the mice lacking the protein were still viable, but there were some deficits in short-term plasticity – when changes occur at the synapses for a short period of time. The strength of synaptic transmission determines how we process information. It affects everything from memory to thinking and feeling,” said Dr. Susanne Schoch, a postdoctoral research fellow and lead author of the two-part study.

“We also found that RIM1a has a central function in neurotransmitter release and is required for long-term plasticity, which is similar to short-term plasticity, but the changes are usually smaller and last longer. Long-term plasticity has been particularly well-studied in recent years, more so than short-term plasticity. It is thought to be important for long-term memory,” Schoch said.

The RIM1 protein was identified in 1997 by Südhof and his research collaborators.

“I think once the whole process is better understood there definitely could be implications for drug development,” Schoch said. “Right now we’re trying to put together a huge puzzle, so the full picture is still very unclear. Once we learn more about the entire process, then it would be helpful for understanding more about learning and memory, but right now we are getting a basic understanding of how the process works.”

Südhof’s research focuses on nerve-cell interaction and neurotransmitter release. Through this research he hopes to gain a better understanding of brain function under normal and pathologic conditions. Südhof and his collaborators made an important discovery last year about how a harmful Alzheimer’s disease protein functions in healthy brains. The findings, which put researchers one step closer to defining the pathogenesis of the disease, were published in Science in July 2000.

Other contributors to the Nature studies included researchers from Stanford University School of Medicine; Albert Einstein College of Medicine of Yeshiva University; the Leibniz Institute for Neurobiology in Magdeburg, Germany; and the Max-Plank Institute for Experimental Medicine in Göttingen, Germany. Dr. Konark Mukherjee and Dr. Yun Wang, both research fellows in the Center for Basic Neuroscience at UT Southwestern, also contributed to the first part of the study.

The studies were funded by the Howard Hughes Medical Institute and the National Institutes of Health.


Story Source:

The above story is based on materials provided by University Of Texas Southwestern Medical Center At Dallas. Note: Materials may be edited for content and length.


Cite This Page:

University Of Texas Southwestern Medical Center At Dallas. "Researchers Closer To Defining Function Of Two Proteins Involved In Neurotransmitter Release." ScienceDaily. ScienceDaily, 17 January 2002. <www.sciencedaily.com/releases/2002/01/020117072832.htm>.
University Of Texas Southwestern Medical Center At Dallas. (2002, January 17). Researchers Closer To Defining Function Of Two Proteins Involved In Neurotransmitter Release. ScienceDaily. Retrieved September 1, 2014 from www.sciencedaily.com/releases/2002/01/020117072832.htm
University Of Texas Southwestern Medical Center At Dallas. "Researchers Closer To Defining Function Of Two Proteins Involved In Neurotransmitter Release." ScienceDaily. www.sciencedaily.com/releases/2002/01/020117072832.htm (accessed September 1, 2014).

Share This




More Mind & Brain News

Monday, September 1, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Can You Train Your Brain To Eat Healthy?

Can You Train Your Brain To Eat Healthy?

Newsy (Sep. 1, 2014) — New research says if you condition yourself to eat healthy foods, eventually you'll crave them instead of junk food. Video provided by Newsy
Powered by NewsLook.com
Coffee Then Napping: The (New) Key To Alertness

Coffee Then Napping: The (New) Key To Alertness

Newsy (Aug. 30, 2014) — Researchers say having a cup of coffee then taking a nap is more effective than a nap or coffee alone. Video provided by Newsy
Powered by NewsLook.com
Young Entrepreneurs Get $100,000, If They Quit School

Young Entrepreneurs Get $100,000, If They Quit School

AFP (Aug. 29, 2014) — Twenty college-age students are getting 100,000 dollars from a Silicon Valley leader and a chance to live in San Francisco in order to work on the start-up project of their dreams, but they have to quit school first. Duration: 02:20 Video provided by AFP
Powered by NewsLook.com
Baby Babbling Might Lead To Faster Language Development

Baby Babbling Might Lead To Faster Language Development

Newsy (Aug. 29, 2014) — A new study suggests babies develop language skills more quickly if their parents imitate the babies' sounds and expressions and talk to them often. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins