New! Sign up for our free email newsletter.
Science News
from research organizations

Laser Ultrasonic Sensor Streamlines Papermaking Process

Date:
March 1, 2002
Source:
Lawrence Berkeley National Laboratory
Summary:
Hoping to save the paper manufacturing industry millions of dollars in energy costs, Lawrence Berkeley National Laboratory engineers have developed a laser ultrasonic sensor that measures paper's flexibility as it courses through a production web at up to 65 miles per hour.
Share:
FULL STORY

Hoping to save the paper manufacturing industry millions of dollars in energy costs, Lawrence Berkeley National Laboratory engineers have developed a laser ultrasonic sensor that measures paper's flexibility as it courses through a production web at up to 65 miles per hour.

"We're measuring the elastic properties of paper at manufacturing speeds using a noncontact, nondestructive monitor," says Paul Ridgway of Berkeley Lab's Environmental Energy Technologies Division.

Last summer, Ridgway and colleagues tested the laser ultrasonic sensor at a Mead Paper Company mill in Ohio. They installed the sensor on a pilot paper coating machine and ran six paper grades through the web press, ranging from copy paper to heavy linerboard. The sensor's signals remained excellent even at paper speeds up to 5,000 feet per minute, and the laser didn't damage the paper. The effects of the papers' moisture, tension, basis weight, and speed on the measurements were also examined.

"The Mead test demonstrated the instrument works in an industrial setting," Ridgway says. "It's a successful step toward a mill trial on a paper-making machine in which the environment will be much harsher. It will be hotter and wetter, and there will be more vibrations and fiber debris in the air."

The sensor is part of the Department of Energy's Agenda 2020, a collaboration between the wood, paper, and forestry industry and the Department of Energy (DOE) launched in 1994 to improve the industry's energy and resource efficiency. To understand how the sensor contributes to this initiative, consider how paper is currently evaluated. After it's manufactured, a small sample of a three-ton paper roll is manually analyzed for its mechanical properties by observing how it bends. If the sample doesn't meet specifications, the entire roll is scrapped or sold as an inferior grade. To avoid this costly mistake, manufacturers often overengineer paper, erring on the side of caution and using more pulp than necessary to ensure the final product isn't substandard. Not only does this consume more raw materials, it consumes more energy: the more pulp used per unit of paper, the more heat is required during the drying phase, which even in the most efficient mills requires an enormous amount of energy.

Rather than rely on postproduction evaluation and hope for the best, Ridgway and colleagues have developed a sensor that measures flexibility on the fly, in real time. It also conducts the measurements without touching the paper, an important advantage given that at 30 meters per second the slightest contact can mar lightweight grades such as copy paper and newsprint. This represents an improvement over contact transducers, another real-time evaluation tool that measures paper's tensile elasticity by placing an ultrasound head directly onto the paper as it's coursing through the web. Because it touches the paper, this technique can only be used with thicker stock.

In rough terms, the sensor measures the time it takes ultrasonic shock waves to propagate from a laser-induced excitation point to a detection point only millimeters away. The velocity at which the ultrasound waves travel from the ablation point through the paper to the detection point is theoretically related to two elastic properties, bending stiffness and out-of-plane shear rigidity.

More specifically, a detection beam from a commercially available Mach-Zender interferometer is directed toward a quickly rotating mirror. As the mirror spins, the beam is reflected in a circular pattern much like a lighthouse's beam. During a portion of each revolution, the beam meets the paper as it courses along the production belt and remains with the paper until the beam's arc leaves the paper's plane. Think of the lighthouse beam momentarily tracking a speedboat as it races parallel to shore. Because both the beam and the paper are moving at the same speed, the detection beam remains on the same point on the paper throughout their brief contact.

An optical encoder determines when the detection beam is perpendicular to the paper, at which time a specially designed adjustable delay circuit fires the pulsed neodymium-yttrium-aluminum-garnet laser. This microsecond pulse causes a microscopic thermal expansion or ablation on the paper, which is too small to mar the paper and effect how it absorbs ink, but strong enough to send ultrasonic shock waves through the sheet. The waves propagate through the paper until they're registered by the detection beam. Because the laser is synchronized to only fire when the detection beam is perpendicular to the paper, the distance between the ablation point and detection point is known, and the waves' speed is calculated.

A full-scale pilot test of the laser ultrasonic sensor is scheduled for the summer of 2003, Ridgway says. And further in the future, the sensor could provide quality-control safeguards and real-time process information for feedback process control in any manufacturing process involving thin, moving sheets such as sheet metals, sheet plastics, polymeric materials, and glass.

In addition, the sensor's auspicious Mead Paper Company field test represents a Berkeley Lab success under the auspices of the Laboratory Coordinating Council (LCC). The LCC was established in 1995 by the DOE Office of Industrial Technologies to merge the research and development capabilities of the 16 national labs and research facilities with the process needs of nine major industries: agriculture, aluminum, chemical, forest products, glass, metalcasting, mining, petroleum and steel.

It works by essentially bringing the national labs under one roof. Rather than approach each lab individually, industry representatives can approach the LCC with a design need, which in turn matches their project with the most appropriate lab. This gives U.S. industry direct access to the entire DOE lab community at once. And by more efficiently pairing the national labs' vast research resources with the private sector, the LCC enables U.S. industry to become more resource and energy efficient, as well as more competitive in the global marketplace. As such, the DOE's Agenda 2020, which coupled Berkeley Lab's Environmental Energy Technologies Division with the paper industry's need for a noncontact paper sensor, is one of several industry-specific agendas designed to mesh industry needs with national lab know-how.

Berkeley Lab is a U.S. Department of Energy national laboratory located in Berkeley, California. It conducts unclassified scientific research and is managed by the University of California. Visit our website at http://www.lbl.gov.


Story Source:

Materials provided by Lawrence Berkeley National Laboratory. Note: Content may be edited for style and length.


Cite This Page:

Lawrence Berkeley National Laboratory. "Laser Ultrasonic Sensor Streamlines Papermaking Process." ScienceDaily. ScienceDaily, 1 March 2002. <www.sciencedaily.com/releases/2002/02/020228073057.htm>.
Lawrence Berkeley National Laboratory. (2002, March 1). Laser Ultrasonic Sensor Streamlines Papermaking Process. ScienceDaily. Retrieved April 18, 2024 from www.sciencedaily.com/releases/2002/02/020228073057.htm
Lawrence Berkeley National Laboratory. "Laser Ultrasonic Sensor Streamlines Papermaking Process." ScienceDaily. www.sciencedaily.com/releases/2002/02/020228073057.htm (accessed April 18, 2024).

Explore More

from ScienceDaily

RELATED STORIES