Featured Research

from universities, journals, and other organizations

Crystalline Materials Could Mean 3-D TV And Ultrafast Computers

Date:
March 29, 2002
Source:
American Chemical Society
Summary:
In an advance that might do for television and computers what the transistor did for electronics, a research team at the University of California in Los Angeles has devised a means of directing the molecular action of crystalline materials with properties of both solids and liquids. It means consumers, in less than a decade, might be able sit back and revel in solid-looking images that literally project out from a television-like device. That’s not to mention the light-driven computer that could work maybe a million times faster or store a billion times more data.

In an advance that might do for television and computers what the transistor did for electronics, a research team at the University of California in Los Angeles has devised a means of directing the molecular action of crystalline materials with properties of both solids and liquids. It means consumers, in less than a decade, might be able sit back and revel in solid-looking images that literally project out from a television-like device. That’s not to mention the light-driven computer that could work maybe a million times faster or store a billion times more data.

The advance is reported in the March 13 print issue of the Journal of the American Chemical Society, the world’s largest scientific society.

The research raises the prospect that information and images revealed by light passing through these crystalline materials could achieve virtually any shape, or a series of shapes one right after another, and very rapidly. Parts of the crystals can be brightened, darkened or change colors nearly instantly, in billionths of a second, in the presence of electric and magnetic fields that control the three-dimensional shaping.

“We realized this could be a technological breakthrough. There are no examples that I know of of solids made to behave in this way,” says project leader Miguel Garcia-Garibay, Ph.D., a professor in UCLA’s Department of Chemistry and Biochemistry. “Although there are many scientists designing novel electro-optic materials, as far as we know, we are the only ones pursuing this line of work. The possible applications could be quite important — and there are probably ones we haven’t thought of.”

In addition to the possibility of 3-D TV, the solid-crystal molecules could act as ultrafast switches in optical computers. Stacked in a cube several inches high, they could provide unprecedented storage potential, perhaps many billion times that of current devices. Speed of access would prove dramatically faster than is possible with current computer designs.

The crystalline materials could be eventually produced in bulk, similar in form to large plastic blocks. As more is learned, researchers expect to reduce costs and improve manufacturing efficiencies. The UCLA team is making rapid progress, Garcia-Garibay says, and holds out the prospect that commercial versions of the crystalline molecules could be available in a few years.


Story Source:

The above story is based on materials provided by American Chemical Society. Note: Materials may be edited for content and length.


Cite This Page:

American Chemical Society. "Crystalline Materials Could Mean 3-D TV And Ultrafast Computers." ScienceDaily. ScienceDaily, 29 March 2002. <www.sciencedaily.com/releases/2002/03/020329071723.htm>.
American Chemical Society. (2002, March 29). Crystalline Materials Could Mean 3-D TV And Ultrafast Computers. ScienceDaily. Retrieved October 2, 2014 from www.sciencedaily.com/releases/2002/03/020329071723.htm
American Chemical Society. "Crystalline Materials Could Mean 3-D TV And Ultrafast Computers." ScienceDaily. www.sciencedaily.com/releases/2002/03/020329071723.htm (accessed October 2, 2014).

Share This



More Matter & Energy News

Thursday, October 2, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Japan Looks To Faster Future As Bullet Train Turns 50

Japan Looks To Faster Future As Bullet Train Turns 50

Newsy (Oct. 1, 2014) Japan's bullet train turns 50 Wednesday. Here's a look at how it's changed over half a century — and the changes it's inspired globally. Video provided by Newsy
Powered by NewsLook.com
US Police Put Body Cameras to the Test

US Police Put Body Cameras to the Test

AFP (Oct. 1, 2014) Police body cameras are gradually being rolled out across the US, with interest surging after the fatal police shooting in August of an unarmed black teenager. Duration: 02:18 Video provided by AFP
Powered by NewsLook.com
Raw: Japan Celebrates 'bullet Train' Anniversary

Raw: Japan Celebrates 'bullet Train' Anniversary

AP (Oct. 1, 2014) A ceremony marking 50 years since Japan launched its Shinkansen bullet train was held on Wednesday in Tokyo. The latest model can travel from Tokyo to Osaka, a distance of 319 miles, in two hours and 25 minutes. (Oct. 1) Video provided by AP
Powered by NewsLook.com
Robotic Hair Restoration

Robotic Hair Restoration

Ivanhoe (Oct. 1, 2014) A new robotic procedure is changing the way we transplant hair. The ARTAS robot leaves no linear scarring and provides more natural results. Video provided by Ivanhoe
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins