Featured Research

from universities, journals, and other organizations

Thinner Materials Improve Flexible Solar Cells, Flat Panel Displays

Date:
April 10, 2002
Source:
Virginia Tech
Summary:
Virginia Tech researchers' ability to create films in one-nanometer-thick layers is bringing flexible solar cells closer to reality, and has resulted in a thin film that can be changed from transparent to deep violet and back as rapidly as 20 times per second.

Blacksburg, Va., April 9, 2002 -- Virginia Tech researchers' ability to create films in one-nanometer-thick layers is bringing flexible solar cells closer to reality, and has resulted in a thin film that can be changed from transparent to deep violet and back as rapidly as 20 times per second. The work will be presented at the 223nd national meeting of the American Chemical Society, April 7-11 in Orlando.

A nanometer is about 10 atoms thick. Creating material layers a few atoms thick is not hands-on work. Researchers select materials that will self-assemble. Positively and negatively charged molecules are elercctrically attracted to one another. Building materials based on this attraction is called ionic self-assembled multilayers (ISAM).

Virginia Tech researchers are creating flexible photovoltaic devices, or solar cells, by building up nanometer-thick layers of materials selected for their ability to self-assemble and to convert light to electricity.

The researchers are using polymers and molecules called fullerenes. The advantages of these carbon-based (organic) materials over silicon are flexibility and light weight. "You can fabricate a large area all at once, limited only by the size of your vat of solution from which you grow the films," says James R. Heflin, associate professor of physics at Virginia Tech. "Organic solar cells can be flexible, so you could have deployable sails on a space craft, or fold your solar cell into your briefcase or backpack."

So far, the efficiency of organic solar cells is only about 20 percent of silicon. But the Virginia Tech researchers are using ultra-thin layers of fullerenes that act as electron acceptors, which they have demonstrated increases the efficiency of the organic solar cells. "Starting with a conducting polymer, which is a light emitter, we can apply a fullerene layer and produce electrical current from incident light," says Heflin.

The problem being solved by nanotechnology is the distance between the materials that are electron donors and acceptors. The fullerene has to be within 10 nanometers of where the light is absorbed for current to be created. "We believe we can improve the efficiency by factors of five or 10 through nanoscale control of the composition and thickness," Heflin says. "We expect organic solar cells will be at least as efficient as silicon within five years."

The second ISAM application, electrochromic films, is also existing technology being improved with nanotechnology. Films are presently being produced that will change from transparent to dark by applying a small voltage, and changed back by reversing the voltage. The electric field drives ions from one layer of the film to another layer to activate or deactivate optically-absorbing molecules. Applications already include rear view mirrors in automobiles that darken automatically and coated windows that can be darkened with the push of a button. But current materials require several seconds to change color.

Researchers from Virginia Tech and Luna Innovations Inc., funded by the SBIR program, are working on the application of such materials for flat panel displays. Current LCD flat panel displays must be viewed head-on "An electrochromic display will allow you to view the screen of your lap top computer from an angle," explains Heflin.

The problem to be overcome is to increase the speed for the color of the film to change. The refresh rate on a computer screen is 60 to 80 times per second.

Electrochromic films presently being produced consist of two materials, each 100 nanometers thick. The Virginia Tech researchers are using self-assembly to create alternating one-nanometer thick layers of the ion conductor and an electrochromic polymer -- reducing the distance the ions must travel by a significant amount and increasing the response time.

"We have now shown switching times faster than 20 times per second, which is getting close to what is needed for a computer screen," says Heflin.


Story Source:

The above story is based on materials provided by Virginia Tech. Note: Materials may be edited for content and length.


Cite This Page:

Virginia Tech. "Thinner Materials Improve Flexible Solar Cells, Flat Panel Displays." ScienceDaily. ScienceDaily, 10 April 2002. <www.sciencedaily.com/releases/2002/04/020410075934.htm>.
Virginia Tech. (2002, April 10). Thinner Materials Improve Flexible Solar Cells, Flat Panel Displays. ScienceDaily. Retrieved September 18, 2014 from www.sciencedaily.com/releases/2002/04/020410075934.htm
Virginia Tech. "Thinner Materials Improve Flexible Solar Cells, Flat Panel Displays." ScienceDaily. www.sciencedaily.com/releases/2002/04/020410075934.htm (accessed September 18, 2014).

Share This



More Matter & Energy News

Thursday, September 18, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Virtual Reality Headsets Unveiled at Tokyo Game Show

Virtual Reality Headsets Unveiled at Tokyo Game Show

AFP (Sep. 18, 2014) Several companies unveiled virtual reality headsets at the Tokyo Game Show, Asia's largest digital entertainment exhibition. Duration: 00:48 Video provided by AFP
Powered by NewsLook.com
Stocks Hit All-Time High as Fed Holds Steady

Stocks Hit All-Time High as Fed Holds Steady

AP (Sep. 17, 2014) The Federal Reserve signaled Wednesday that it plans to keep a key interest rate at a record low because a broad range of U.S. economic measures remain subpar. Stocks hit an all-time high on the news. (Sept. 17) Video provided by AP
Powered by NewsLook.com
Space Race Pits Bezos Vs Musk

Space Race Pits Bezos Vs Musk

Reuters - Business Video Online (Sep. 16, 2014) Amazon CEO Jeff Bezos' startup will team up with Boeing and Lockheed to develop rocket engines as Elon Musk races to have his rockets certified. Fred Katayama reports. Video provided by Reuters
Powered by NewsLook.com
MIT's Robot Cheetah Unleashed — Can Now Run, Jump Freely

MIT's Robot Cheetah Unleashed — Can Now Run, Jump Freely

Newsy (Sep. 16, 2014) MIT developed a robot modeled after a cheetah. It can run up to speeds of 10 mph, though researchers estimate it will eventually reach 30 mph. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins