Featured Research

from universities, journals, and other organizations

Cosmic X-Rays Reveal Evidence For New Form Of Matter

Date:
April 17, 2002
Source:
NASA/Marshall Space Flight Center
Summary:
NASA's Chandra X-ray Observatory has found two stars – one too small, one too cold — that reveal cracks in our understanding of the structure of matter. These discoveries open a new window on nuclear physics, offering a link between the vast cosmos and its tiniest constituents.

NASA's Chandra X-ray Observatory has found two stars – one too small, one too cold — that reveal cracks in our understanding of the structure of matter. These discoveries open a new window on nuclear physics, offering a link between the vast cosmos and its tiniest constituents.

Chandra’s observations of RXJ1856.5-3754 and 3C58 suggest that the matter in these stars is even denser than nuclear matter found on Earth. This raises the possibility these stars are composed of pure quarks or contain crystals of sub-nuclear particles that normally have only a fleeting existence following high-energy collisions.

By combining Chandra and Hubble Space Telescope data, astronomers found that RXJ 1856 radiates like a solid body with a temperature of 1.2 million degrees Fahrenheit (700,000 degrees Celsius) and has a diameter of about 7 miles (11.3 kilometers). This size is too small to reconcile with standard models for neutron stars — until now the most extreme form of matter known.

“Taken at face value, the combined observational evidence points to a star composed not of neutrons, but of quarks in a form know as strange quark matter,” said Jeremy Drake of the Harvard-Smithsonian Center for Astrophysics (CfA) in Cambridge, Mass., and lead author of a paper on RXJ1856 to appear in June 20, 2002 issue of The Astrophysical Journal. “Quarks, thought to be the fundamental constituents of nuclear particles, have never been seen outside a nucleus in Earth-bound laboratories.”

Observations by Chandra of 3C58 also yielded startling results. A team composed of Patrick Slane and Steven Murray, also of CfA, and David Helfand of Columbia University, New York, failed to detect the expected X-radiation from the hot surface of 3C58, a neutron star believed to have been created in an explosion witnessed by Chinese and Japanese astronomers in 1181 AD. The team concluded that the star has a temperature of less than one million degrees Celsius, which is far below the predicted value.

“Our observations of 3C58 offer the first compelling test of models for how neutron stars cool and, the standard theory fails,” said Helfand. “It appears that neutron stars aren't pure neutrons after all — new forms of matter are required.”

A teaspoonful of neutron star material weighs a billion tons, as much as all the cars, trucks and buses on Earth. Its extraordinary density is equivalent to that of the nucleus of an atom with all of the typical space between the atoms and their nuclei removed. An atom’s nucleus is composed of positively charged protons and neutral neutrons, particles so small that 100 billion trillion of them would fit on the head of a pin.

Protons and neutrons are composed of even smaller particles called quarks, the basic building blocks of matter. Enormous atom smashers are designed to probe the forces between quarks and the structure of the nucleus by smashing high-energy beams of nuclei into each other and observing the violent aftermath for a fraction of a second.

Drake cautioned that the observations of RXJ1856 could be interpreted as a more normal neutron star with a hot spot. Such a model is under consideration by Fred Walter of the State University of New York, Stony Brook, one of the discoverers of RXJ1856, which was originally found in 1996 by the German Roetgen satellite. However, the hot spot model requires a very special orientation of the star with respect to the Earth to explain the absence of pulsations, which would be expected from the hot spot. The probability of such an orientation is quite small.

“Regardless of how these mysteries are resolved, these precise observations are highly significant,” said Michael Turner of the University of Chicago. “They demonstrate our ability to use the universe as a laboratory where we can study some of the most fundamental questions in physics.”

NASA's Marshall Space Flight Center in Huntsville, Ala., manages the Chandra program, and TRW, Inc., Redondo Beach, Calif., is the prime contractor. The Smithsonian's Chandra X-ray Center controls science and flight operations from Cambridge, Mass.

Images and additional information about this result are available at:

http://chandra.harvard.edu

AND

http://chandra.nasa.gov


Story Source:

The above story is based on materials provided by NASA/Marshall Space Flight Center. Note: Materials may be edited for content and length.


Cite This Page:

NASA/Marshall Space Flight Center. "Cosmic X-Rays Reveal Evidence For New Form Of Matter." ScienceDaily. ScienceDaily, 17 April 2002. <www.sciencedaily.com/releases/2002/04/020417071400.htm>.
NASA/Marshall Space Flight Center. (2002, April 17). Cosmic X-Rays Reveal Evidence For New Form Of Matter. ScienceDaily. Retrieved July 28, 2014 from www.sciencedaily.com/releases/2002/04/020417071400.htm
NASA/Marshall Space Flight Center. "Cosmic X-Rays Reveal Evidence For New Form Of Matter." ScienceDaily. www.sciencedaily.com/releases/2002/04/020417071400.htm (accessed July 28, 2014).

Share This




More Space & Time News

Monday, July 28, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Russia Saves Gecko Sex Satellite, Media Has Some Fun With It

Russia Saves Gecko Sex Satellite, Media Has Some Fun With It

Newsy (July 27, 2014) The satellite is back under ground control after a tense few days, but with a gecko sex experiment on board, the media just couldn't help themselves. Video provided by Newsy
Powered by NewsLook.com
NASA EDGE: OCO-2 Launch

NASA EDGE: OCO-2 Launch

NASA (July 25, 2014) NASA EDGE webcasts live from Vandenberg AFB for the launch of the Oribiting Carbon Observatory-2 (OCO) launch. Video provided by NASA
Powered by NewsLook.com
This Week @ NASA, July 25, 2014

This Week @ NASA, July 25, 2014

NASA (July 25, 2014) Apollo 11 celebration, Next Giant Leap anticipation, ISS astronauts appear in the House and more... Video provided by NASA
Powered by NewsLook.com
Space to Ground: Coming and Going

Space to Ground: Coming and Going

NASA (July 25, 2014) One station cargo ship leaves, another arrives, aquatic research and commercial spinoffs. Questions or comments? Use #spacetoground to talk to us. Video provided by NASA
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins