Featured Research

from universities, journals, and other organizations

Teenage Stars: Rebels Without A Known Cause

Date:
May 3, 2002
Source:
NASA/Jet Propulsion Laboratory
Summary:
Normally, a young star gets smaller as its gravity pulls gas and dust in toward its center; the smaller the star gets, the faster it spins. But a scientist with NASA's Jet Propulsion Laboratory, Pasadena, Calif., and her colleagues have found that a significant percentage of adolescent stars do not spin faster as they shrink.

They don't know why, but scientists say some adolescent stars rebel against the norm by spinning more slowly than their peers.

Related Articles


Normally, a young star gets smaller as its gravity pulls gas and dust in toward its center; the smaller the star gets, the faster it spins. But a scientist with NASA's Jet Propulsion Laboratory, Pasadena, Calif., and her colleagues have found that a significant percentage of adolescent stars do not spin faster as they shrink.

"A young, shrinking star should behave like a skater who pulls in her arms to make herself smaller and spin faster," said Dr. Luisa Rebull, a staff scientist at JPL and the California Institute of Technology in Pasadena, which manages JPL for NASA. "We don't know why some stars act differently, but we'd sure like to find out."

Rebull offers four possible reasons for the odd behavior:

1 -- It is simply a quirk of the process by which the stars formed.

2 -- The stellar winds are carrying away the angular momentum, or spin. This is like a skater who extends her arms away from her body to slow down.

3 -- The magnetic field generated by the young stars locks their rotation to the slower rotation rate of the dust and gas disks around them, disks that might eventually form planetary systems.

4 -- The stars have already formed planets from their disks. In our solar system, the largest planet, Jupiter, has the most angular momentum, or spin. Maybe other planetary systems are operating the same way, with large planets "stealing the momentum" from the parent star.

The fourth possibility intrigues scientists with NASA's Origins Program, which will hunt for Earthlike planets that might harbor life. If orbiting planets cause this odd stellar behavior, scientists might detect them by looking for this trait. Rebull is a scientist on a new Origins mission, the Space Infrared Telescope Facility. The mission will launch early next year on a mission which, as one of its many goals, will look for planet-forming disks around other stars. A subsequent Origins mission, the Space Interferometry Mission, will look for planets around young stars to investigate the planet hypothesis directly.

For this current research, Rebull and her team studied more than 9,000 stars in the Orion Nebula and the Christmas Tree Cluster, also known as NGC 2264. They observed about 500 stars with large spots. The spots are like Sunspots, but much bigger, covering a large portion of the star's surface. As the stars rotate, the spots come into and out of view, causing tiny changes in the total light we see from the star. Some of these stars appear redder than expected. That might indicate they have dust disks around them, Rebull said, which could interact with the star to slow its rotation. This might support the third possible explanation.

The researchers used the .76-meter (30-inch) telescope at the McDonald Observatory in western Texas. They also incorporated data from the National Optical Astronomy Observatory, Tucson, Ariz. The research paper, which Rebull co-authored with Drs. Sidney Wolff and Steven Strom of the National Optical Astronomy Observatory, and Russell Makidon of the Space Telescope Science Institute, Baltimore, Md., will appear in the July 2002 issue of the Astronomical Journal.

More information is available online at

http://spider.ipac.caltech.edu/staff/rebull/rotation .

More information on the Origins Program is available at

http://origins.jpl.nasa.gov .

JPL manages the Origins Program for NASA's Office of Space Science, Washington, D.C. JPL is a division of the California Institute of Technology.


Story Source:

The above story is based on materials provided by NASA/Jet Propulsion Laboratory. Note: Materials may be edited for content and length.


Cite This Page:

NASA/Jet Propulsion Laboratory. "Teenage Stars: Rebels Without A Known Cause." ScienceDaily. ScienceDaily, 3 May 2002. <www.sciencedaily.com/releases/2002/05/020503075430.htm>.
NASA/Jet Propulsion Laboratory. (2002, May 3). Teenage Stars: Rebels Without A Known Cause. ScienceDaily. Retrieved December 21, 2014 from www.sciencedaily.com/releases/2002/05/020503075430.htm
NASA/Jet Propulsion Laboratory. "Teenage Stars: Rebels Without A Known Cause." ScienceDaily. www.sciencedaily.com/releases/2002/05/020503075430.htm (accessed December 21, 2014).

Share This


More From ScienceDaily



More Space & Time News

Sunday, December 21, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Spokesman: 'NORAD Ready to Track Santa'

Spokesman: 'NORAD Ready to Track Santa'

AP (Dec. 19, 2014) Pentagon spokesman Rear Adm. John Kirby said that NORAD is ready to track Santa Claus as he delivers gifts next week. Speaking tongue-in-cheek, he said if Santa drops anything off his sleigh, "we've got destroyers out there to pick them up." (Dec. 19) Video provided by AP
Powered by NewsLook.com
NASA's Planet-Finding Kepler Mission Isn't Over After All

NASA's Planet-Finding Kepler Mission Isn't Over After All

Newsy (Dec. 18, 2014) More than a year after NASA declared the Kepler spacecraft broken beyond repair, scientists have figured out how to continue getting useful data. Video provided by Newsy
Powered by NewsLook.com
Rover Finds More Clues About Possible Life On Mars

Rover Finds More Clues About Possible Life On Mars

Newsy (Dec. 17, 2014) NASA's Curiosity rover detected methane on Mars and organic compounds on the surface, but it doesn't quite prove there was life ... yet. Video provided by Newsy
Powered by NewsLook.com
Evidence of Life on Mars? NASA Rover Finds Methane, Organic Chemicals

Evidence of Life on Mars? NASA Rover Finds Methane, Organic Chemicals

Reuters - US Online Video (Dec. 16, 2014) NASA's Mars Curiosity rover finds methane in the Martian atmosphere and organic chemicals in the planet's soil, the latest hint that Mars was once suitable for microbial life. Linda So reports. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins