Featured Research

from universities, journals, and other organizations

Tau Protein Required For Development Of Alzheimer's Disease

Date:
May 7, 2002
Source:
Northwestern University
Summary:
A group of Northwestern University neuroscientists have reported the first evidence showing that tau must be present to enable beta-amyloid to induce the degeneration of brain cells that occurs in Alzheimer’s disease.

CHICAGO --- Researchers have argued for years over whether neurofibrillary tau tangles or beta-amyloid plaques are the primary cause of Alzheimer’s disease. Autopsies show that these hallmarks of Alzheimer’s disease are often found in the same brain regions – preferentially in areas responsible for learning and memory -- but investigators previously have been unable to identify a mechanism linking the two types of lesions.

Now, a group of Northwestern University neuroscientists have reported the first evidence showing that tau must be present to enable beta-amyloid to induce the degeneration of brain cells that occurs in Alzheimer’s disease.

Adriana Ferreira, M.D., and co-researchers from The Feinberg School of Medicine and the Northwestern University Institute for Neuroscience recently published their findings, which support a key role for tau in the mechanisms leading to beta-amyloid—induced neurodegeneration, in an article in the April 30 issue of the Proceedings of the National Academy of Science.

Results of the group’s experiments showed that neurons with normal amounts of tau degenerated in the presence of beta-amyloid, while neurons specially treated to be devoid of tau did not degenerate.

"Our results underscore the importance of tau in the pathogenesis of this devastating disease and open a new chapter in deciphering the toxic pathways activated by beta-amyloid," said Ferriera, assistant professor of cell and molecular biology and NUIN researcher.

When the researchers analyzed the composition of the cytoskeleton, or cellular scaffolding, of tau-depleted neurons, they found rapid turnover of microtubules, the structures within the cell that stabilize the cell’s shape and act as a sort of intracellular molecular transport system.

These results suggest that neurons that are able to maintain the composition of microtubules with rapid turnover as they age – that is, tau-depleted neurons – might be resistant to neurodegeneration, Ferreira said.

"These findings identify the dynamic behavior of the microtubules as a new target for therapeutic intervention. They also suggest that factors able to induce or restore a more plastic composition of the microtubules might prevent the neuronal degeneration associated with the formation of senile plaques in Alzheimer’s disease patients," she said.

Currently, Ferreira and her laboratory group are testing a variety of such factors, including hormones and trophic factors.

Ferreira’s co-researchers on this study were Mark Rapoport, NUIN; Lester I. Binder, professor of cell and molecular biology and NUIN; as well as Hana N. Dawson and Michael P. Vitek, Duke University, Durham, N.C., and Cognosci, Inc., Research Triangle Park, N.C.


Story Source:

The above story is based on materials provided by Northwestern University. Note: Materials may be edited for content and length.


Cite This Page:

Northwestern University. "Tau Protein Required For Development Of Alzheimer's Disease." ScienceDaily. ScienceDaily, 7 May 2002. <www.sciencedaily.com/releases/2002/05/020507073512.htm>.
Northwestern University. (2002, May 7). Tau Protein Required For Development Of Alzheimer's Disease. ScienceDaily. Retrieved July 23, 2014 from www.sciencedaily.com/releases/2002/05/020507073512.htm
Northwestern University. "Tau Protein Required For Development Of Alzheimer's Disease." ScienceDaily. www.sciencedaily.com/releases/2002/05/020507073512.htm (accessed July 23, 2014).

Share This




More Mind & Brain News

Wednesday, July 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Huge Schizophrenia Study Finds Dozens Of New Genetic Causes

Huge Schizophrenia Study Finds Dozens Of New Genetic Causes

Newsy (July 22, 2014) The 83 new genetic markers could open dozens of new avenues for schizophrenia treatment research. Video provided by Newsy
Powered by NewsLook.com
Why Do People Believe We Only Use 10 Percent Of Our Brains?

Why Do People Believe We Only Use 10 Percent Of Our Brains?

Newsy (July 22, 2014) The new sci-fi thriller "Lucy" is making people question whether we really use all our brainpower. But, as scientists have insisted for years, we do. Video provided by Newsy
Powered by NewsLook.com
Do Obese Women Have 'Food Learning Impairment'?

Do Obese Women Have 'Food Learning Impairment'?

Newsy (July 18, 2014) Yale researchers tested 135 men and women, and it was only obese women who were deemed to have "impaired associative learning." Video provided by Newsy
Powered by NewsLook.com
Does Mixing Alcohol and Energy Drinks Boost Urge To Drink?

Does Mixing Alcohol and Energy Drinks Boost Urge To Drink?

Newsy (July 18, 2014) A new study suggests that mixing alcohol with energy drinks makes you want to keep the party going. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins