Featured Research

from universities, journals, and other organizations

New Robotic Microscope Helps Scientists Track Cells Over Time

Date:
June 10, 2002
Source:
University Of California - San Francisco
Summary:
A new invention—a robotic microscope—is opening the way for scientists to track changes in cells over time as genes are expressed and the resulting proteins go into action. Tracking this dynamic process is extremely difficult using conventional techniques. Part of the problem has been the cells' need for the warmth and atmosphere of an incubator such that cells can only be taken out and viewed for brief periods of time.

A new invention—a robotic microscope—is opening the way for scientists to track changes in cells over time as genes are expressed and the resulting proteins go into action. Tracking this dynamic process is extremely difficult using conventional techniques. Part of the problem has been the cells' need for the warmth and atmosphere of an incubator such that cells can only be taken out and viewed for brief periods of time.

Related Articles


The robotic microscope, the brainchild of Steven Finkbeiner, MD, PhD, investigator in the Gladstone Institute of Neurological Disease and UCSF assistant professor of neurology and physiology, overcomes this problem.

At first glance, the robotic microscope looks like an ordinary inverted microscope. The differences are in the fast and precise motors and sophisticated computer programs that automatically focus the objective, move the stage, and photograph cells growing in a plastic tissue culture plate.

For each plate of cells, the microscope first focuses on an internal reference point. It then moves the plate a precise distance, refocuses itself, and takes a photograph, repeating this process until it has obtained images of the entire plate or any specific area.

Hours or days later, the plate can be returned to the microscope, and the same cells can be identified and re-examined. A computer program, also developed by Finkbeiner, automatically analyzes the photos within minutes. He can ask the computer to measure cells with specific morphologies, specific amounts of proteins, or other features.

"The pieces of the puzzle were out there, it was just a matter of putting them together," said Finkbeiner, referring to the components he used to build the microscope.

The microscope was developed to facilitate his studies of Huntington's disease, an inherited neurological disorder that causes involuntary movements, cognitive decline, and personality disturbances, usually beginning in midlife, Finkbeiner said. Huntington's disease is caused by a mutation in the gene that encodes huntingtin, a protein of unknown function. Scientists know that mutant huntingtin is responsible for the neurodegeneration, but they don't know how it causes individual neurons to die.

Does neurodegeneration result when the mutant huntingtin molecules clump together to form aggregates? Or does the mutation cause harm by changing the activity of huntingtin molecules that are not tangled up in the aggregates?

To answer those and other questions, Finkbeiner uses his robotic microscope to study neuronal cells that express mutant huntingtin tagged with fluorescent reporter molecules. The fluorescence from the mutant protein can be easily visualized with special filters on the microscope. By examining the same cells repeatedly over time, he can correlate the appearance and aggregation of the mutant huntingtin with cellular changes indicative of degeneration.

Before developing the robotic microscope, Finkbeiner used immunocytochemistry to view the neurons. But this technique is limited because it provides only a "snapshot" of cells at a single point in time, but no information about the dynamic process of neurodegeneration. And neurons that would degenerate later could not be assessed at all because there was no simple or reliable way to find them again.

In addition, analyzing the cells was laborious and time-consuming. In a typical experiment, 300,000 cells are analyzed, a task that used to take six weeks. With the robotic microscope, it takes only 15 minutes. Another advantage of the new device is that the criteria used to define features of interest, such as markers of degeneration, are clearly defined and applied consistently by the computer program, eliminating possible bias, Finkbeiner said.

Perhaps most important, the ability to track individual cells over time allows Finkbeiner to identify factors that predict the fate of the cell. "We can examine neurons well before they die, make measurements of whatever we wish, and then determine which factors have prognostic value, whether they predict survival or neurodegeneration, and how strong the prediction is. This is a powerful new way to guide our investigation into the underlying mechanisms of neurodegeneration," he said.

The microscope is a breakthrough for research into Huntington's disease and many other diseases or processes that require intense focus on cell biology.

"Use of the microscope isn't limited to neuroscience," Finkbeiner said. "Many scientists who need to study developmental, adaptive, or maladaptive responses in cells over time and provide quantitative descriptions of them could benefit from using the system."

The Gladstone Institute of Neurological Disease is one of three research institutes that comprise The J. David Gladstone Institutes, a private nonprofit biomedical research institution affiliated with UCSF. The institute is named for a prominent real estate developer who died in 1971. His will created a testamentary trust that reflects his long-standing interest in medical education and research.


Story Source:

The above story is based on materials provided by University Of California - San Francisco. Note: Materials may be edited for content and length.


Cite This Page:

University Of California - San Francisco. "New Robotic Microscope Helps Scientists Track Cells Over Time." ScienceDaily. ScienceDaily, 10 June 2002. <www.sciencedaily.com/releases/2002/06/020610074158.htm>.
University Of California - San Francisco. (2002, June 10). New Robotic Microscope Helps Scientists Track Cells Over Time. ScienceDaily. Retrieved October 31, 2014 from www.sciencedaily.com/releases/2002/06/020610074158.htm
University Of California - San Francisco. "New Robotic Microscope Helps Scientists Track Cells Over Time." ScienceDaily. www.sciencedaily.com/releases/2002/06/020610074158.htm (accessed October 31, 2014).

Share This



More Health & Medicine News

Friday, October 31, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Fauci Says Ebola Risk in US "essentially Zero"

Fauci Says Ebola Risk in US "essentially Zero"

AP (Oct. 30, 2014) NIAID Director Anthony Fauci said the risk of Ebola becoming an epidemic in the U.S. is essentially zero Thursday at the Washington Ideas Forum. He also said an Ebola vaccine will be tested in West Africa in the next few months. (Oct. 30) Video provided by AP
Powered by NewsLook.com
Nurse Defies Ebola Quarantine With Bike Ride

Nurse Defies Ebola Quarantine With Bike Ride

AP (Oct. 30, 2014) A nurse who vowed to defy Maine's voluntary quarantine for health care workers who treated Ebola patients followed through on her promise Thursday, leaving her home for an hour-long bike ride. (Oct. 30) Video provided by AP
Powered by NewsLook.com
Pot-Infused Edibles Raise Concerns in Colorado

Pot-Infused Edibles Raise Concerns in Colorado

AFP (Oct. 30, 2014) Colorado may have legalized marijuana for recreational use, but the debate around the decision still continues, with a recent - failed - attempt to ban cannabis-infused edibles. Duration: 01:53 Video provided by AFP
Powered by NewsLook.com
British Navy Ship Arrives in Sierra Leone With Ebola Aid

British Navy Ship Arrives in Sierra Leone With Ebola Aid

AFP (Oct. 30, 2014) The British ship RFA ARGUS arrived in Sierra Leone to deliver supplies and equipment to help the fight against Ebola. Duration: 00:42 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins