Featured Research

from universities, journals, and other organizations

Researchers Identify Protein That Regulates Killer Cells

Date:
June 21, 2002
Source:
University Of Toronto
Summary:
Researchers at the University of Toronto and Mount Sinai Hospital have identified a protein that plays a critical role in the regulation of "natural killers cells" in the immune system's battle against foreign and diseased cells.

Researchers at the University of Toronto and Mount Sinai Hospital have identified a protein that plays a critical role in the regulation of "natural killers cells" in the immune system's battle against foreign and diseased cells.

Related Articles


"Our research is a small part of the larger problem of how viruses and diseased cells ravage the body and circumvent our immune system," says Kathleen Binns, a U of T doctoral student in medical genetics and microbiology and an author on a paper in the June 20 issue of Science.

Using mass spectrometry, Binns, who does research in the Samuel Lunenfeld Research Institute at Mount Sinai and MDS Sciex, sequenced and identified a mystery protein from co-researchers at the Swiss Federal Institute of Technology in Switzerland.

Once identified, the protein (SSPase) was sent back to the Swiss researchers where they cloned its gene and sequenced its DNA. That gene, they discovered, is a key component involved in regulation of "natural killer cells" - cells produced by the body's immune system that attack foreign or mutated cells like caused by viruses or cancer.

"This research gives us a better understanding of how the immune system works. As a result, we have a better understanding of how viruses and cancer try to get around this process. One day, we will hopefully be able to develop treatments and therapies to counter these rogue cells," says Binns.

A group of genes called the major histocompatibility complex I (MHC-I) are a natural part of the immune system and present in most cells in the body, explains Binns. Acting like an information relay, the MHC-I molecules retrieve bits and pieces of the proteins from inside the cell and display them on the cell surface. "MHC complexes essentially give a read out of what's inside the cell," she says.

T-cells, one of the main components of the immune system, "examine" the protein fragments on the cell surface and if they recognize them, the T-cells move on. If, however, the T-cells do not recognize the fragments, the cell may be hosting a virus or manufacturing mutant proteins (as in the case of cancer). The T-cells then react by attacking and killing the "diseased" cells.

Some virus and tumor cells, however, have evolved mechanisms that circumvent the T-cell attack by stopping MHC production and the display of disease proteins, says Binns.

As a countermeasure, the researchers found that the immune system developed a monitor that employs the SSPase protein and uses a second type of immune cell known as a natural killer cell, she notes. The protein processes MHC-I molecules to make a peptide signal. If sufficient levels of the MHC-I protein are present in the cell, the natural killer cell moves on. If, however, the killer cell detects insufficient levels of the MHC-I protein because it has not received the particular peptide signal, the killer cell attacks and destroys the suspect cell.

"This process is a check on viruses and abnormal cells that try to bypass the T-cell system," says Binns. "Viruses become smarter, our immune systems work to counteract them and the viruses get smarter again. There's this constant evolution for the drive to survive, and viruses and cancer cells have the same drive to survive that we do."

Binns conducted the research with Andreas Weihofen, lead author on the study, Marius Lemberg and Bruno Martoglio of the Institute of Biochemistry at the Swiss Federal Institute of Technology, and Keith Ashman, an investigator at the Samuel Lunenfeld Research Institute at Mount Sinai Hospital.

This research was funded by the Natural Science and Engineering Research Council of Canada and MDS Sciex, the Swiss Federal Institute of Technology and the Swiss National Science Foundation.


Story Source:

The above story is based on materials provided by University Of Toronto. Note: Materials may be edited for content and length.


Cite This Page:

University Of Toronto. "Researchers Identify Protein That Regulates Killer Cells." ScienceDaily. ScienceDaily, 21 June 2002. <www.sciencedaily.com/releases/2002/06/020621080829.htm>.
University Of Toronto. (2002, June 21). Researchers Identify Protein That Regulates Killer Cells. ScienceDaily. Retrieved November 29, 2014 from www.sciencedaily.com/releases/2002/06/020621080829.htm
University Of Toronto. "Researchers Identify Protein That Regulates Killer Cells." ScienceDaily. www.sciencedaily.com/releases/2002/06/020621080829.htm (accessed November 29, 2014).

Share This


More From ScienceDaily



More Health & Medicine News

Saturday, November 29, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Rural India's Low-Cost Sanitary Pad Revolution

Rural India's Low-Cost Sanitary Pad Revolution

AFP (Nov. 28, 2014) — One man hopes his invention -– a machine that produces cheap sanitary pads –- will help empower Indian women. Duration: 01:51 Video provided by AFP
Powered by NewsLook.com
Research on Bats Could Help Develop Drugs Against Ebola

Research on Bats Could Help Develop Drugs Against Ebola

AFP (Nov. 28, 2014) — In Africa's only biosafety level 4 laboratory, scientists have been carrying out experiments on bats to understand how virus like Ebola are being transmitted, and how some of them resist to it. Duration: 01:18 Video provided by AFP
Powered by NewsLook.com
WHO Says Male Ebola Survivors Should Abstain From Sex

WHO Says Male Ebola Survivors Should Abstain From Sex

Newsy (Nov. 28, 2014) — WHO cites four studies that say Ebola can still be detected in semen up to 82 days after the onset of symptoms. Video provided by Newsy
Powered by NewsLook.com
Ebola Leaves Orphans Alone in Sierra Leone

Ebola Leaves Orphans Alone in Sierra Leone

AFP (Nov. 27, 2014) — The Ebola epidemic sweeping Sierra Leone is having a profound effect on the country's children, many of whom have been left without any family members to support them. Duration: 01:02 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins