Featured Research

from universities, journals, and other organizations

University At Buffalo Materials Researchers Develop Device For "Ultrasmall" Data Storage

Date:
June 27, 2002
Source:
University At Buffalo
Summary:
Two University at Buffalo materials researchers have developed an extremely sensitive nanoscale device that could shrink ultra-high-density storage devices to record sizes.

BUFFALO, N.Y. -- Two University at Buffalo materials researchers have developed an extremely sensitive nanoscale device that could shrink ultra-high-density storage devices to record sizes.

The magnetic sensor, made of nickel and measuring only a few atoms in diameter, could increase data storage capacity by a factor of a 1,000 or more and ultimately could lead to supercomputing devices as small as a wristwatch, according to Harsh Deep Chopra, associate professor of mechanical and aerospace engineering, and Susan Hua, research associate professor of mechanical and aerospace engineering, in the UB School of Engineering and Applied Sciences.

The National Science Foundation (NSF) and U.S. Department of Energy supported their research.

As stored "bits" of data get smaller, their magnetic field gets weaker, making the bits harder to detect and "read." Reliable reading of the data depends on producing a large enough magnetically induced change in the electrical resistance of the sensor. Producing a detectable change at room temperature is another challenge.

In an experiment at UB, Chopra and Hua demonstrated that their tiny sensor produces an unusually large change in resistance in an ultra-small magnetic field at room temperature. The magnitude of the magnetic effect they created surpasses all previous records. The results will be published in the July 1 issue of Physical Review B.

The effect is based on spintronics, a rapidly growing field that employs not only the charge, but also the spin of electrons in making electrical devices.

The current technology used in the heads, or sensors, that read bits from a storage disk is based on an effect called "giant" magnetoresistance (GMR). GMR refers to the change in the sensor resistance when placed in a magnetic field; the effect is typically less than 100 percent. Inside a hard drive, a GMR device senses the local magnetic field of a stored bit of data. Such sensors have enabled commercial hard drives that can store the amount of data contained in a DVD full-length movie in a space the size of a credit card.

The effect created with the new nickel device is called "ballistic" magnetoresistance (BMR) and employs an electrical conductor that is only a few atoms wide and long. The BMR experiment exhibited a record change in sensor resistance of more than 3,000 percent. Chopra predicts the ultimate capacity will be about a terabit per square inch. This could enable the storage of 50 or more DVDs on a hard drive the size of a credit card.

Besides being useful for the multi-billion-dollar data-storage industry, the BMR techniques could improve magnetic measurements and the study of magnetic effects in individual atoms, molecules and nanoscale clusters. It could also greatly enhance resolution and sensitivity of scanning probe imaging techniques that are widely used to characterize magnetic materials.


Story Source:

The above story is based on materials provided by University At Buffalo. Note: Materials may be edited for content and length.


Cite This Page:

University At Buffalo. "University At Buffalo Materials Researchers Develop Device For "Ultrasmall" Data Storage." ScienceDaily. ScienceDaily, 27 June 2002. <www.sciencedaily.com/releases/2002/06/020627001423.htm>.
University At Buffalo. (2002, June 27). University At Buffalo Materials Researchers Develop Device For "Ultrasmall" Data Storage. ScienceDaily. Retrieved September 16, 2014 from www.sciencedaily.com/releases/2002/06/020627001423.htm
University At Buffalo. "University At Buffalo Materials Researchers Develop Device For "Ultrasmall" Data Storage." ScienceDaily. www.sciencedaily.com/releases/2002/06/020627001423.htm (accessed September 16, 2014).

Share This



More Matter & Energy News

Tuesday, September 16, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Space Race Pits Bezos Vs Musk

Space Race Pits Bezos Vs Musk

Reuters - Business Video Online (Sep. 16, 2014) Amazon CEO Jeff Bezos' startup will team up with Boeing and Lockheed to develop rocket engines as Elon Musk races to have his rockets certified. Fred Katayama reports. Video provided by Reuters
Powered by NewsLook.com
MIT's Robot Cheetah Unleashed — Can Now Run, Jump Freely

MIT's Robot Cheetah Unleashed — Can Now Run, Jump Freely

Newsy (Sep. 16, 2014) MIT developed a robot modeled after a cheetah. It can run up to speeds of 10 mph, though researchers estimate it will eventually reach 30 mph. Video provided by Newsy
Powered by NewsLook.com
Manufacturer Prints 3-D Car In Record Time

Manufacturer Prints 3-D Car In Record Time

Newsy (Sep. 15, 2014) Automobile manufacturer Local Motors created a drivable electric car using a 3-D printer. Printing the body only took 44 hours. Video provided by Newsy
Powered by NewsLook.com
Refurbished New York Subway Tunnel Unveiled After Sandy Damage

Refurbished New York Subway Tunnel Unveiled After Sandy Damage

Reuters - US Online Video (Sep. 15, 2014) New York officials unveil subway tunnels that were refurbished after Superstorm Sandy. Nathan Frandino reports. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

    Environment News

      Technology News



      Save/Print:
      Share:

      Free Subscriptions


      Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

      Get Social & Mobile


      Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

      Have Feedback?


      Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
      Mobile: iPhone Android Web
      Follow: Facebook Twitter Google+
      Subscribe: RSS Feeds Email Newsletters
      Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins