Featured Research

from universities, journals, and other organizations

Plastic Shows Promise For Spintronics, Magnetic Computer Memory

Date:
September 25, 2002
Source:
Ohio State University
Summary:
Researchers at Ohio State University and their colleagues have expanded the possibilities for a new kind of electronics, known as spintronics. Though spintronics technology has yet to be fully developed, it could result in computers that store more data in less space, process data faster, and consume less power. It could even lead to computers that "boot up" instantly, said Arthur J. Epstein, professor of physics and chemistry and director of Ohio State's Center for Materials Research.

COLUMBUS, Ohio -- Researchers at Ohio State University and their colleagues have expanded the possibilities for a new kind of electronics, known as spintronics.

Though spintronics technology has yet to be fully developed, it could result in computers that store more data in less space, process data faster, and consume less power. It could even lead to computers that "boot up" instantly, said Arthur J. Epstein, professor of physics and chemistry and director of Ohio State's Center for Materials Research.

Spintronics uses magnetic fields to control the spin of electrons. In the current issue of the journal Advanced Materials, Epstein and his coauthors report using a magnetic field to make nearly all the moving electrons inside a sample of plastic spin in the same direction, an effect called spin polarization. Achieving spin polarization is the first step in converting the plastic into a device that could read and write spintronic data inside a working computer.

What's unique about this work is that the researchers achieved spin polarization in a polymer, which offers several advantages over silicon and gallium arsenide -- the traditional materials for electronics.

Epstein and long-time collaborator Joel S. Miller, professor of chemistry at the University of Utah, co-authored the paper with Vladimir N. Prigodin, a research specialist; Nandyala P. Raju, a research associate; and Konstantin I. Pokhodynya, a visiting researcher, all of Ohio State.

Since the mid 1980s, Epstein and Miller have been developing plastic electronics, most recently a plastic magnet that conducts electricity. Epstein characterized this latest project as part of a natural progression of their work toward spintronics.

"Electronics and magnetism have transformed modern society," said Epstein. "The advent of plastic electronics opens up many opportunities for new technologies such as flexible displays and inexpensive solar cells."

"With this latest study, we've now shown that we can make all of the components that go into spintronics from plastics," Epstein continued. "So it is timely to bring all these components together to make plastic spintronics."

Current efforts to develop spintronics with traditional inorganic semiconductors have been stymied by the fact that most such materials aren't magnetic, except at very low temperatures. Creating a cryogenically cold environment inside a hot computer interior -- where temperatures reach up to 120 F (50 C) -- would be expensive. Plus, any cooling equipment would take up precious real estate inside a small device.

That's why the Ohio State and Utah researchers chose a plastic called vanadium tetracyanoethanide. The material exhibits magnetic qualities at high temperatures, even above the boiling point of water (212 F, 100 C), so it could possibly function inside a computer without special cooling equipment.

Why are researchers so interested in spintronics? Normal electronics encode computer data based on a binary code of ones and zeros, depending on whether an electron is present in a void within the material. But in principle, the direction of a spinning electron -- either "spin up" or "spin down" -- can be used as data, too. So spintronics would effectively let computers store and transfer twice as much data per electron.

Another bonus: once a magnetic field pushes an electron into a direction of spin, it will keep spinning the same way until another magnetic field causes the spin to change. This effect can be used to very quickly access magnetically stored information during computer operation -- even if the electrical power to a computer is switched off between uses. Data can be stored permanently, and is nearly instantly available anytime, no lengthy "boot up" needed.

Plastic spintronics would weigh less than traditional electronics and cost less to manufacture, Epstein said. Today's inorganic semiconductors are created through multiple steps of vacuum deposition and etching. Theoretically, inexpensive ink-jet technology could one day be used to quickly print entire sheets of plastic semiconductors for spintronics.

Using plastic may solve another problem currently faced by developers: spinning electrons must be able to move smoothly between different components. But traveling from one material to another can sometimes knock an electron off-kilter. Data encoded in that electron's spin would be lost.

For this reason, Epstein, Miller, and their colleagues are working on transferring spinning electrons through a layered stack of different magnetic and non-magnetic polymers.

The U.S. Department of Energy and the Army Research Office supported this work.


Story Source:

The above story is based on materials provided by Ohio State University. Note: Materials may be edited for content and length.


Cite This Page:

Ohio State University. "Plastic Shows Promise For Spintronics, Magnetic Computer Memory." ScienceDaily. ScienceDaily, 25 September 2002. <www.sciencedaily.com/releases/2002/09/020925063707.htm>.
Ohio State University. (2002, September 25). Plastic Shows Promise For Spintronics, Magnetic Computer Memory. ScienceDaily. Retrieved July 25, 2014 from www.sciencedaily.com/releases/2002/09/020925063707.htm
Ohio State University. "Plastic Shows Promise For Spintronics, Magnetic Computer Memory." ScienceDaily. www.sciencedaily.com/releases/2002/09/020925063707.htm (accessed July 25, 2014).

Share This




More Computers & Math News

Friday, July 25, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Mobile App Gives Tour of Battle of Atlanta Sites

Mobile App Gives Tour of Battle of Atlanta Sites

AP (July 25, 2014) Emory University's Center for Digital Scholarship has launched a self-guided mobile tour app to coincide with the 150th anniversary of the Civil War's Battle of Atlanta. (July 25) Video provided by AP
Powered by NewsLook.com
Bill Gates: Health, Agriculture Key to Africa's Development

Bill Gates: Health, Agriculture Key to Africa's Development

AFP (July 24, 2014) Health and agriculture development are key if African countries are to overcome poverty and grow, US software billionaire Bill Gates said Thursday, as he received an honourary degree in Ethiopia. Duration: 00:36 Video provided by AFP
Powered by NewsLook.com
Creative Makeovers for Ugly Cellphone Towers

Creative Makeovers for Ugly Cellphone Towers

AP (July 24, 2014) Mobile phone companies and communities across the country are going to new lengths to disguise those unsightly cellphone towers. From a church bell tower to a flagpole, even a pencil, some towers are trying to make a point. (July 24) Video provided by AP
Powered by NewsLook.com
Robot Parking Valet Creates Stress-Free Travel

Robot Parking Valet Creates Stress-Free Travel

AP (July 23, 2014) 'Ray' the robotic parking valet at Dusseldorf Airport in Germany lets travelers to avoid the hassle of finding a parking spot before heading to the check-in desk. (July 23) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

    Health News

      Environment News

        Technology News



          Save/Print:
          Share:

          Free Subscriptions


          Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

          Get Social & Mobile


          Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

          Have Feedback?


          Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
          Mobile: iPhone Android Web
          Follow: Facebook Twitter Google+
          Subscribe: RSS Feeds Email Newsletters
          Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins