Featured Research

from universities, journals, and other organizations

NIAMS Scientists Find Biochemical Switch Directs Muscle Building

Date:
September 26, 2002
Source:
NIH/National Institute Of Arthritis And Musculoskeletal And Skin Diseases
Summary:
Scientists may soon be able to influence muscle formation more easily as a result of research conducted in the National Institute of Arthritis and Musculoskeletal and Skin Diseases' Laboratory of Muscle Biology. The researchers there and at institutions in California and Italy have found that inhibitors of the enzyme deacetylase can switch the pathway of muscle precursor cells (myoblasts) from simply reproducing themselves to becoming mature cells that form muscle fibers (myotubules).

Scientists may soon be able to influence muscle formation more easily as a result of research conducted in the National Institute of Arthritis and Musculoskeletal and Skin Diseases' Laboratory of Muscle Biology. The researchers there and at institutions in California and Italy have found that inhibitors of the enzyme deacetylase can switch the pathway of muscle precursor cells (myoblasts) from simply reproducing themselves to becoming mature cells that form muscle fibers (myotubules).

Related Articles


It has been known for some time that deacetylase prevents the skeletal muscle gene from being expressed, which inhibits myoblasts from forming muscle. The research team has found that under certain conditions, deacetylase inhibitors (DIs) in myoblasts enhance muscle gene expression and muscle fiber formation.

Knowledge of how DIs act against deacetylase is providing important insights on potential ways to correct problems that occur during embryonic muscle development. This research may also lead to methods to induce muscle growth, regeneration and repair in adults.

Simona Iezzi, Ph.D., and Vittorio Sartorelli, M.D., in the NIAMS Muscle Gene Expression Group, along with Pier Lorenzo Puri, M.D., at the Salk Institute for Biological Studies and other investigators at the University of Rome, exposed human and mouse myoblasts to DIs while they were dividing or after placement in a medium that stimulates myoblasts to become muscle cells. The researchers found that exposing dividing human and mouse myoblasts to a DI increased the levels of muscle proteins and led to a dramatic increase in the formation of muscle fibers. Similar experiments were done in developing mouse embryos, resulting in an increased number of somites (the regions of the embryo from which muscle cells are derived) and augmented expression of muscle genes.

Dr. Sartorelli's group continues to investigate how the myoblasts are stimulated to fuse into myotubules. One theory is that the performance of poorly differentiated myoblasts is enhanced when they are recruited by cells with a good capacity to differentiate. Further research will be directed at discovering whether the cells that have been induced to form muscle will restore muscle function when transplanted into a mouse model of muscular dystrophy. In addition, the researchers at the NIAMS Muscle Gene Expression Group plan to expose adult muscle stem cells from a mouse model to DIs to understand their biology and their potential use as therapeutic tools.

The mission of the National Institute of Arthritis and Musculoskeletal and Skin Diseases is to support research into the causes, treatment, and prevention of arthritis and musculoskeletal and skin diseases, the training of basic and clinical scientists to carry out this research, and the dissemination of information on research progress in these diseases. For more information about NIAMS, please call (301) 495-4484 or (877) 22-NIAMS (free call) or visit the NIAMS Web site at http://www.niams.nih.gov.

Iezzi S, Cossu G, Nervi C, Sartorelli V, Puri P. Stage-specific modulation of skeletal myogenesis by inhibitors of nuclear deacetylases. PNAS 2002;99(11):7757-7762.


Story Source:

The above story is based on materials provided by NIH/National Institute Of Arthritis And Musculoskeletal And Skin Diseases. Note: Materials may be edited for content and length.


Cite This Page:

NIH/National Institute Of Arthritis And Musculoskeletal And Skin Diseases. "NIAMS Scientists Find Biochemical Switch Directs Muscle Building." ScienceDaily. ScienceDaily, 26 September 2002. <www.sciencedaily.com/releases/2002/09/020926064829.htm>.
NIH/National Institute Of Arthritis And Musculoskeletal And Skin Diseases. (2002, September 26). NIAMS Scientists Find Biochemical Switch Directs Muscle Building. ScienceDaily. Retrieved April 1, 2015 from www.sciencedaily.com/releases/2002/09/020926064829.htm
NIH/National Institute Of Arthritis And Musculoskeletal And Skin Diseases. "NIAMS Scientists Find Biochemical Switch Directs Muscle Building." ScienceDaily. www.sciencedaily.com/releases/2002/09/020926064829.htm (accessed April 1, 2015).

Share This


More From ScienceDaily



More Health & Medicine News

Wednesday, April 1, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Wound-Healing Laser Soon to Be a Reality Israeli Scientist

Wound-Healing Laser Soon to Be a Reality Israeli Scientist

Reuters - Innovations Video Online (Apr. 1, 2015) Israeli scientists says laser bonding of tissue allows much faster healing and less scarring. Amy Pollock has more. Video provided by Reuters
Powered by NewsLook.com
Liberia Sees Resurgence of Drug Trafficking as Ebola Wanes

Liberia Sees Resurgence of Drug Trafficking as Ebola Wanes

AFP (Apr. 1, 2015) The governments of Liberia and Sierra Leone have been busy fighting the menace created by the deadly Ebola virus, but illicit drug lords have taken advantage of the situation to advance the drug trade. Duration: 01:12 Video provided by AFP
Powered by NewsLook.com
Stigma Stalks India's Leprosy Sufferers as Disease Returns

Stigma Stalks India's Leprosy Sufferers as Disease Returns

AFP (Apr. 1, 2015) The Indian government declared victory over leprosy in 2005, but the disease is making a comeback in some parts of the country, with more than a hundred thousand lepers still living in colonies, shunned from society. Duration: 02:41 Video provided by AFP
Powered by NewsLook.com
7-Year-Old Girl Gets 3-D Printed 'robohand'

7-Year-Old Girl Gets 3-D Printed 'robohand'

AP (Mar. 31, 2015) Although she never had much interest in prosthetic limbs before, Faith Lennox couldn&apos;t wait to slip on her new robohand. The 7-year-old, who lost part of her left arm when she was a baby, grabbed it as soon as it came off a 3-D printer. (March 31) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins