New! Sign up for our free email newsletter.
Science News
from research organizations

Preliminary Study Shows High-Dose Coenzyme Q10 Slows Functional Decline In Parkinson's Patients

Date:
October 15, 2002
Source:
University Of California - San Diego
Summary:
A national clinical trial with 80 Parkinson's disease patients has shown that high dosages of a naturally occurring compound, coenzyme Q10, slowed by 44 percent the progressive deterioration in function that occurs in the disease. The greatest benefit was seen in everyday activities such as feeding, dressing, bathing and walking.
Share:
FULL STORY

A national clinical trial with 80 Parkinson's disease patients has shown that high dosages of a naturally occurring compound, coenzyme Q10, slowed by 44 percent the progressive deterioration in function that occurs in the disease. The greatest benefit was seen in everyday activities such as feeding, dressing, bathing and walking.

The study's coordinators caution that while encouraging, the therapy needs to be tested in a larger trial with hundreds of patients before this treatment can be recommended.

Published in the Oct. 15, 2002 issue of the American Medical Association's Archives of Neurology, the study was conducted at 10 sites by the Parkinson Study Group, under the direction of principal investigator Clifford Shults, M.D., professor of neurosciences, University of California, San Diego (UCSD) School of Medicine, and chief of the Neurology Service at the VA San Diego Healthcare System. Parkinson's disease is a degenerative disorder of the brain in which patients develop tremor, slowness of movement and stiffness of muscles. It affects approximately 1 percent of Americans over the age of 65. Although certain drugs, such as levodopa, can reduce the symptoms of Parkinson's disease, no treatment has been shown to slow the progressive deterioration in function.

The selection of coenzyme Q10 as a potential treatment for Parkinson's was based on work carried out over the past decade by Shults, Richard Haas, M.D., UCSD professor of neurosciences, and Flint Beal, M.D., professor and chair of neurology, Weill Medical College of Cornell University.

Shults explained that mitochondria produce the energy-containing molecules that supply energy to chemical reactions in cells and that coenzyme Q10 plays an integral role in that process. He further explained that coenzyme Q10 is also a potent antioxidant. Over the past several years, research by Shults, Haas and Beal showed that mitochondrial function is impaired in patients with Parkinson's disease and coenzyme Q10 levels are reduced in the mitochondria of Parkinsonian patients. Beal and Shults studied coenzyme Q10 in an animal model of Parkinson's disease and found that it could protect the part of the brain affected by the disorder.

"Coenzyme Q10 plays a crucial role in normal mitochondrial function both as a component of the electron transport chain which makes cellular energy and as a molecule with antioxidant and pro-oxidant properties," Haas said. "Recently, several rare mitochondrial diseases affecting younger people resulting from coenzyme Q10 deficiency have been described. These patients may respond dramatically to coenzyme Q10 treatment. Tissue coenzyme Q10 levels fall with aging and we do not know why this occurs. The normal lower levels of Coenzyme Q10 in older individuals may be a contributing factor in the progression of some diseases of aging."

In the Parkinson Study Group national clinical trial, 80 Parkinsonian patients who had early disease and did not yet need medications typically used to treat Parkinson's disease (such as levodopa), were randomly assigned to receive coenzyme Q10 four times a day at a dosage of 300, 600 or 1200 mg/day, or a placebo, also taken four times a day. Prior to beginning the study, the patients were evaluated with a medical history, physical exam, laboratory tests, and a battery of clinical assessments of Parkinson's disease. Participants were reevaluated with tests to assess the severity of the Parkinson's disease at regular intervals and followed until the time that they needed treatment with medications used to treat the symptoms of Parkinson's disease, or for a maximum of 16 months.

By the eighth month visit, the scores among the four groups had clearly separated and established a pattern of the groups taking the lowest and intermediate dosages (300 and 600 mg/day) being similar and lower than placebo and the scores for the group receiving the highest dosage (1200 mg/day) being substantially lower than the other groups. The lower score reflected less impairment and better function. This pattern persisted to the end of the study. The benefit was seen in assessment of mental function and mood, activities of daily living and motor skills.

If the drug had merely been ameliorating symptoms – while the disease continued unchecked to kill nerve cells – the researchers would have expected the initial, first-month check-up to reveal improvement in the coenzyme Q10 groups. Since that was not the case, Shults hypothesized that the drug might have slowed the underlying progression of the disease over the 16-month period of the study. However, Shults cautioned that a study


Story Source:

Materials provided by University Of California - San Diego. Note: Content may be edited for style and length.


Cite This Page:

University Of California - San Diego. "Preliminary Study Shows High-Dose Coenzyme Q10 Slows Functional Decline In Parkinson's Patients." ScienceDaily. ScienceDaily, 15 October 2002. <www.sciencedaily.com/releases/2002/10/021015073837.htm>.
University Of California - San Diego. (2002, October 15). Preliminary Study Shows High-Dose Coenzyme Q10 Slows Functional Decline In Parkinson's Patients. ScienceDaily. Retrieved April 22, 2024 from www.sciencedaily.com/releases/2002/10/021015073837.htm
University Of California - San Diego. "Preliminary Study Shows High-Dose Coenzyme Q10 Slows Functional Decline In Parkinson's Patients." ScienceDaily. www.sciencedaily.com/releases/2002/10/021015073837.htm (accessed April 22, 2024).

Explore More

from ScienceDaily

RELATED STORIES