Featured Research

from universities, journals, and other organizations

Scripps Research Institute Group Designs DNA Vaccine That Inhibits Growth Of Cancerous Tumors

Date:
November 5, 2002
Source:
Scripps Research Institute
Summary:
A group of researchers at The Scripps Research Institute (TSRI) have developed a novel DNA vaccine that helps the body resist the growth of cancerous tumors by choking off the tumors' blood supply.

A group of researchers at The Scripps Research Institute (TSRI) have developed a novel DNA vaccine that helps the body resist the growth of cancerous tumors by choking off the tumors' blood supply.

"We stimulate the immune system to recognize proliferating blood vessels in the tumor vasculature and to recruit killer T cells to destroy these vessels," explains TSRI Immunology Professor Ralph Reisfeld, Ph.D., who conducted the study with Research Associate Andreas G. Niethammer, M.D., and others. "Deprived of its blood supply, the tumor [eventually dies]."

Niethammer, Reisfeld, and their collaborators describe their successful pre-clinical studies with the vaccine in an article to be published next month in the journal Nature Medicine.

Though not yet tested in humans, their vaccine has the potential to treat many types of cancer, and it may provide a new strategy for the rational design of cancer therapies.

Two Approaches to Treating Cancer

Cancer is not a single disease, but rather over a hundred diseases caused by various sorts of mutations inside various cells in various tissues. Some mutations upregulate genes, increasing the expression of metalloproteinases for instance; others downregulate them, shutting off production of receptor proteins.

After certain mutations occur, a cancer cell grows out of control, dividing over and over and forming a solid tumor. Cancer tumors often damage the tissues where they are located and some can metastasize and migrate through the bloodstream--the malignant carcinoma that claims so many lives every year.

In recent years, some novel approaches to treating cancer have generated interest in scientific circles and society at large.

One of these approaches to is to try to block the process of angiogenesis, the formation of new blood vessels that bring necessary nutrients and oxygen to the hungry tumor cells. Block angiogenesis, the thinking goes, and you can starve a tumor--like drying out a lake by diverting all its tributaries.

The second approach involves attacking the tumor cells directly with a technique known as active immunotherapy. Active immunotherapy involves giving the immune system a push to start killing cancer cells by presenting the so-called killer T cells with tumor-specific antigen. Antigens are markers--proteins on the surface of a cancer cell, for instance--that are used by the immune system to distinguish one cell from another.

Once a killer T cell is presented with the specific antigen, it is stimulated to expand and selectively attack cells that display that antigen. Since cancer cells are originally "self" cells, the trick is to find some antigen that they display, but which normal cells in the body do not. Fortunately, the mutations that cause cancer often cause such antigens to appear on the surface of cancer cells. Sometimes, these antigens are overexpressed on cancer cells, decorating them much more than normal cells, and sometimes the antigens are expressed only on cancer cells. But in any case, when the immune system is stimulated to specifically attack cells with those antigens, the cancer cells can no longer hide behind their "self" facade.

The drawback to immunotherapy is that tumor cells are often very different from one another, confounding attempts to find a single antigen to broadly attack various cancer tumors. Compounding this problem is that even the original tumor can acquire emergent resistance by mutating--as cancer cells often do--and downregulate the target antigens, becoming invisible to the passing killer T cells.

Similarly, anti-angiogenic approaches are complicated by the fact that there are many ways through which a tumor cell can start angiogenesis. Blocking one may simply cause the tumor cells to use another.

But by combining the two approaches, the TSRI team seems to have solved both problems.

Anti-Angiogenic DNA Vaccines--A New Approach

The solution that Niethammer and Reisfeld employed was to target not the tumor cells themselves but the endothelial cells that proliferate to form new blood vessels. Unlike the tumor cells, which readily mutate to resist treatment, the endothelial cells are not prone to mutations and therefore represent a more stationary target.

And targeting the endothelial cells proved effective because these cells are absolutely necessary for tumor growth, since they provide the blood that the tumor cells need to grow.

The DNA vaccine uses an antigen "marker" known as vascular-endothelial growth factor receptor-2 that is upregulated on endothelial cells--particularly those that are undergoing angiogenesis due to nearby cancer tumor growth.

This antigen DNA is inserted into a "targeting vector," the replication-deficient Samonella typhimurium bacteria, which direct the DNA to lymph nodes in the gut--the so-called Peyer's patches. Once there, the bacteria die and release the bits of DNA, which are taken up by professional antigen-presenting dendritic cells and macrophages. Within these cells, the DNA is translated into protein and then presented to T cells.

Once the T cells see the growth factor receptor, they are activated and will circulate through the bloodstream targeting potential tumor-supporting angiogenic endothelial cells that display it.

"We hope that these studies established a proof of concept that may eventually contribute to the development of novel cancer therapies," says Niethammer.

The article, "A DNA vaccine against VEGF receptor 2 prevents effective angiogenesis and inhibits tumor growth" was authored by Andreas G. Niethammer, Rong Xiang, Jurgen C. Becker, Harald Wodrich, Ursula Pertl, Gabriele Karsten, Brian P. Eliceiri, and Ralph A. Reisfeld and appears in the November 4, 2002 online edition of the journal Nature Medicine. The article will appear in print in the December 2002 edition of the same journal.

This work was supported by the National Institutes of Health, the American Heart Association, the Tobacco-Related Disease Research Program Grant, the Department of Defense, EMD Lexigen Research Center, and by fellowships through Deutsche Krebshilfe and Deutsche Forschungsgemeinschaft.


Story Source:

The above story is based on materials provided by Scripps Research Institute. Note: Materials may be edited for content and length.


Cite This Page:

Scripps Research Institute. "Scripps Research Institute Group Designs DNA Vaccine That Inhibits Growth Of Cancerous Tumors." ScienceDaily. ScienceDaily, 5 November 2002. <www.sciencedaily.com/releases/2002/11/021105080723.htm>.
Scripps Research Institute. (2002, November 5). Scripps Research Institute Group Designs DNA Vaccine That Inhibits Growth Of Cancerous Tumors. ScienceDaily. Retrieved July 28, 2014 from www.sciencedaily.com/releases/2002/11/021105080723.htm
Scripps Research Institute. "Scripps Research Institute Group Designs DNA Vaccine That Inhibits Growth Of Cancerous Tumors." ScienceDaily. www.sciencedaily.com/releases/2002/11/021105080723.htm (accessed July 28, 2014).

Share This




More Health & Medicine News

Monday, July 28, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Traditional African Dishes Teach Healthy Eating

Traditional African Dishes Teach Healthy Eating

AP (July 28, 2014) Classes are being offered nationwide to encourage African Americans to learn about cooking fresh foods based on traditional African cuisine. The program is trying to combat obesity, heart disease and other ailments often linked to diet. (July 28) Video provided by AP
Powered by NewsLook.com
West Africa Gripped by Deadly Ebola Outbreak

West Africa Gripped by Deadly Ebola Outbreak

AFP (July 28, 2014) The worst-ever outbreak of the deadly Ebola epidemic grips west Africa, killing hundreds. Duration: 00:48 Video provided by AFP
Powered by NewsLook.com
Trees Could Save More Than 850 Lives Each Year

Trees Could Save More Than 850 Lives Each Year

Newsy (July 27, 2014) A national study conducted by the USDA Forest Service found that trees collectively save more than 850 lives on an annual basis. Video provided by Newsy
Powered by NewsLook.com
Google's Next Frontier: The Human Body

Google's Next Frontier: The Human Body

Newsy (July 27, 2014) Google is collecting genetic and molecular information to paint a picture of the perfectly healthy human. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins