Featured Research

from universities, journals, and other organizations

Rice Deciphers Optical Spectra Of Carbon Nanotubes

Date:
December 2, 2002
Source:
Rice University
Summary:
Building upon this summer's groundbreaking finding that carbon nanotubes are fluorescent, chemists at Rice University have precisely identified the optical signatures of 33 "species" of nanotubes, establishing a new methodology for assaying nanotubes that is simpler and faster than existing methods.

HOUSTON-- Nov. 28, 2002 -- Building upon this summer's groundbreaking finding that carbon nanotubes are fluorescent, chemists at Rice University have precisely identified the optical signatures of 33 "species" of nanotubes, establishing a new methodology for assaying nanotubes that is simpler and faster than existing methods.

Related Articles


In research published this week by Science magazine, a spectroscopy research team led by Rice Chemistry Professor R. Bruce Weisman detailed the wavelengths of light that are absorbed and emitted by each type of light-emitting nanotube. The findings hold great promise for chemists, physicists and materials scientists studying nanotubes, because it otherwise takes many hours of tedious testing for researchers to assay a single sample of nanotubes, and optical tests could be much faster and simpler.

"Optical nanotube spectroscopy is an important enabling tool for nanotechnology research, because it reveals the composition of nanotube samples through simple measurements," said Weisman. "Chemists and biochemists commonly use optical instruments that can characterize samples within a matter of seconds. With refinement, similar methodologies can probably be applied to nanotube analysis."

Carbon nanotubes are cylinders of carbon atoms that measure about one nanometer, or one-billionth of a meter, in diameter. That's about 50,000 times smaller than a human hair. Because of their astounding physical and electrical properties, scientists have envisioned using nanotubes in everything from the skins of spacecraft to electronic wiring that's 100 times smaller than the circuits in today's most advanced silicon microchips.

The ability to sort nanotubes must be overcome if they are to be transformed from a laboratory oddity to a marketable commodity, but sorting isn't feasible until chemists have a practical way to inspect what they're sorting. Sorting is an issue because nanotubes aren't identical. There are actually three families of carbon nanotubes, and cousins and siblings in these families have slightly different diameters and physical structures. While almost imperceptible, these slight variations give rise to drastically different properties: about one-third of nanotubes are metals for example, and the others are semiconductors. Since every method of preparing nanotubes yields dozens of varieties, researchers have to sort and classify the types of tubes they are most interested in studying.

This summer, Weisman's group and the carbon nanotube research team of Rice's Richard Smalley reported that all semiconducting varieties of nanotubes fluoresce. Fluorescence occurs when a substance absorbs one wavelength of light and emits a different wavelength in response.

Once fluorescence of nanotubes was confirmed, researchers in Weisman's and Smalley's research groups began investigating the spectral properties of various kinds and classes of nanotubes. The research is detailed in a paper titled "Structure-Assigned Optical Spectra of Single-Walled Carbon Nanotubes," published online today by Science magazine.

In addition to applied researchers, theoretical scientists will also use the spectral research to help refine models that predict the expected physical, mechanical, structural and electrical properties of nanotubes. In several instances, Weisman's group reported experimental data that differed substantially from what theorists have predicted.

The Rice research team also included Sergei M. Bachilo, Michael S. Strano, Carter Kittrell, Robert H. Hauge and Smalley. The research was funded by the National Science Foundation and the Robert A. Welch Foundation.


Story Source:

The above story is based on materials provided by Rice University. Note: Materials may be edited for content and length.


Cite This Page:

Rice University. "Rice Deciphers Optical Spectra Of Carbon Nanotubes." ScienceDaily. ScienceDaily, 2 December 2002. <www.sciencedaily.com/releases/2002/12/021202072502.htm>.
Rice University. (2002, December 2). Rice Deciphers Optical Spectra Of Carbon Nanotubes. ScienceDaily. Retrieved October 25, 2014 from www.sciencedaily.com/releases/2002/12/021202072502.htm
Rice University. "Rice Deciphers Optical Spectra Of Carbon Nanotubes." ScienceDaily. www.sciencedaily.com/releases/2002/12/021202072502.htm (accessed October 25, 2014).

Share This



More Matter & Energy News

Saturday, October 25, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

IKEA Desk Converts From Standing to Sitting With One Button

IKEA Desk Converts From Standing to Sitting With One Button

Buzz60 (Oct. 24, 2014) IKEA is out with a new convertible desk that can convert from a sitting desk to a standing one with just the push of a button. Jen Markham explains. Video provided by Buzz60
Powered by NewsLook.com
Ebola Protective Suits Being Made in China

Ebola Protective Suits Being Made in China

AFP (Oct. 24, 2014) A factory in China is busy making Ebola protective suits for healthcare workers and others fighting the spread of the virus. Duration: 00:38 Video provided by AFP
Powered by NewsLook.com
Real-Life Transformer Robot Walks, Then Folds Into a Car

Real-Life Transformer Robot Walks, Then Folds Into a Car

Buzz60 (Oct. 24, 2014) Brave Robotics and Asratec teamed with original Transformers toy company Tomy to create a functional 5-foot-tall humanoid robot that can march and fold itself into a 3-foot-long sports car. Jen Markham has the story. Video provided by Buzz60
Powered by NewsLook.com
Police Testing New Gunfire Tracking Technology

Police Testing New Gunfire Tracking Technology

AP (Oct. 24, 2014) A California-based startup has designed new law enforcement technology that aims to automatically alert dispatch when an officer's gun is unholstered and fired. Two law enforcement agencies are currently testing the technology. (Oct. 24) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins