Featured Research

from universities, journals, and other organizations

A New Window To View How Experiences Rewire The Brain

Date:
December 23, 2002
Source:
Howard Hughes Medical Institute
Summary:
Howard Hughes Medical Institute researchers have developed sophisticated microscopy techniques that permit them to watch how the brains of live mice are rewired as the mice learn to adapt to new experiences.

Howard Hughes Medical Institute researchers have developed sophisticated microscopy techniques that permit them to watch how the brains of live mice are rewired as the mice learn to adapt to new experiences.

Related Articles


Their studies show that rewiring of the brain involves the formation and elimination of synapses, the connections between neurons. The technique offers a new way to examine how learning can spur changes in the organization of neuronal connections in the brain.

The researchers, postdoctoral fellow Josh Trachtenberg, graduate student Brian Chen and Karel Svoboda, a Howard Hughes Medical Institute investigator at Cold Spring Harbor Laboratory, published their findings in the December 19/26, 2002,issue of the journal Nature.

According to Svoboda, researchers had previously shown that the adult brain has a capacity to reorganize in response to new experience. However, it is not clear how this reorganization might occur. Svoboda and his colleagues wanted to see whether learning could induce restructuring of the neural circuitry in the brain that could not be picked up with conventional techniques.

To study those kinds of changes in a living animal, Svoboda and his colleagues started with transgenic mice that were engineered to produce green fluorescent protein within neurons in a portion of the brain that processes tactile sensory inputs from the whiskers. To observe changes in these neurons at high resolution, the scientists constructed a 2-photon laser scanning microscope. This microscope uses an infrared laser to excite green fluorescent protein in neurons, deep in the brain, through a tiny glass window installed in a portion of the mouse's skull.

"Since we had this great tool to look at the brain at unprecedented resolution we did not know what to expect and we began with no preconceived notions of what we might see in these animals," said Svoboda. "Our first observations of the large-scale structure of neurons, their axons and dendrites, revealed that they were remarkably stable over a month." Dendrites and axons are highly branched structures, where dendrites are the input side of neurons and axons the output side.

"However, when we zoomed in closer, we found that some spines on dendrites appeared and disappeared from day to day," said Svoboda. These spines stipple the surface of dendrites, like twigs from a branch, and form the receiving ends of synapses, which are the junctions between neurons where neurotransmitters are released.

"This finding was quite unexpected, because the traditional view of neural development has been that when animals mature, the formation of synapses ceases, which is indicated by stable synaptic densities," said Svoboda. "However, the flaw in this view has been that a stable density only indicates a balanced rate of birth and death of synapses. It doesn't imply the absence of the formation of new synapses, but it was often interpreted that way."

In their experiments, Svoboda and his colleagues observed that about twenty percent of spines disappeared from one day to the next, offset by the formation of new spines.

"While we were surprised at the rate of turnover of some spines, we were also surprised at the incredible stability of other spines," said Svoboda. The spines appeared to fall into different classes. And while there were those that turned over rapidly, other spines, typically the larger ones, persisted for months.

To test whether the new spines were actually forming synapses, the researchers used electron microscopy to analyze in brain slices the same regions that they had studied in the living animals. Those studies revealed that the sprouting spines had indeed formed synapses.

The researchers also explored whether sensory experiences could affect the turnover of spines. In this set of experiments, they trimmed individual whiskers from the mice, forcing them to experience their environment with a subset of whiskers. This manipulation expands the representation of the intact whiskers at the expense of trimmed whiskers. There was a dramatic effect on spine turn-over.

"We found in these animals that there was a pronounced increase in the rate of birth and death of these synapses, as evidenced by increased turnover of spines," said Svoboda. "This finding indicates that there's a pronounced rewiring of the synaptic circuitry, with the formation of new synapses and the elimination of other synapses," he said.

In an accompanying article published in Nature, researchers led by Wen-Biao Gan of the New York School of Medicine found almost no turnover of spines in a region of the visual cortex they studied in mice. Although the results of the experiments would appear to be contradictory, Svoboda said that is not necessarily the correct conclusion. Svoboda said that the visual cortex in adult animals might exhibit far less spine turnover than the tactile sensory region studied by his group. Also, he said, if the animals in the experiments by Gan and his colleagues lived in a visually impoverished environment, experience-dependent synaptic plasticity might not be as evident.

Svoboda said that his team's results suggest that a "sample and hold" model may operate to drive the plasticity of the adult brain. "We believe that the high turnover that we see might play an important role in neural plasticity, in that the sprouting spines reach out to probe different presynaptic partners on neighboring neurons" said Svoboda. "If a given connection is favorable -- that is, reflecting a desirable kind of brain rewiring -- then these synapses are stabilized and become more permanent. But most of these synapses are not going in the right direction, and they are retracted."

The finding that structural plasticity in the adult brain is limited to synapses and spines could help explain the phenomenon of "critical periods," said Svoboda. As an animal matures, there are certain critical periods early in development during which brain plasticity is highly active. By the time the animal reaches adulthood, plasticity is much reduced.

"It may be that in adulthood, since the large-scale structure of neurons does not change, the brain has become essentially an entangled mesh of neuronal processes. Axons and dendrites are stuck with each other as neighbors for life," said Svoboda. "Each neuron thus may have a limited number of permanent neighbors, and any further rewiring with experience is limited to changes in the spines that connect those neurons."

In further studies, Svoboda and his colleagues plan to explore how brain circuitry changes on a larger-scale, by observing mice engineered to express different fluorescent proteins in different populations of neurons.


Story Source:

The above story is based on materials provided by Howard Hughes Medical Institute. Note: Materials may be edited for content and length.


Cite This Page:

Howard Hughes Medical Institute. "A New Window To View How Experiences Rewire The Brain." ScienceDaily. ScienceDaily, 23 December 2002. <www.sciencedaily.com/releases/2002/12/021223084110.htm>.
Howard Hughes Medical Institute. (2002, December 23). A New Window To View How Experiences Rewire The Brain. ScienceDaily. Retrieved December 19, 2014 from www.sciencedaily.com/releases/2002/12/021223084110.htm
Howard Hughes Medical Institute. "A New Window To View How Experiences Rewire The Brain." ScienceDaily. www.sciencedaily.com/releases/2002/12/021223084110.htm (accessed December 19, 2014).

Share This


More From ScienceDaily



More Mind & Brain News

Friday, December 19, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Researchers Test Colombian Village With High Alzheimer's Rates

Researchers Test Colombian Village With High Alzheimer's Rates

AFP (Dec. 19, 2014) In Yarumal, a village in N. Colombia, Alzheimer's has ravaged a disproportionately large number of families. A genetic "curse" that may pave the way for research on how to treat the disease that claims a new victim every four seconds. Duration: 02:42 Video provided by AFP
Powered by NewsLook.com
Double-Amputee Becomes First To Move Two Prosthetic Arms With His Mind

Double-Amputee Becomes First To Move Two Prosthetic Arms With His Mind

Buzz60 (Dec. 19, 2014) A double-amputee makes history by becoming the first person to wear and operate two prosthetic arms using only his mind. Jen Markham has the story. Video provided by Buzz60
Powered by NewsLook.com
Prenatal Exposure To Pollution Might Increase Autism Risk

Prenatal Exposure To Pollution Might Increase Autism Risk

Newsy (Dec. 18, 2014) Harvard researchers found children whose mothers were exposed to high pollution levels in the third trimester were twice as likely to develop autism. Video provided by Newsy
Powered by NewsLook.com
Yoga Could Be As Beneficial For The Heart As Walking, Biking

Yoga Could Be As Beneficial For The Heart As Walking, Biking

Newsy (Dec. 17, 2014) Yoga can help your weight, blood pressure, cholesterol and heart just as much as biking and walking does, a new study suggests. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins