Featured Research

from universities, journals, and other organizations

Protein Linked To Movement Disorders

Date:
January 31, 2003
Source:
Howard Hughes Medical Institute
Summary:
Using a tiny worm to model a severe childhood movement disorder, researchers at The University of Alabama have discovered the role of a protein that may have implications for a number of neurological syndromes such as Parkinson's and Huntington’s diseases.

Using a tiny worm to model a severe childhood movement disorder, researchers at The University of Alabama have discovered the role of a protein that may have implications for a number of neurological syndromes such as Parkinson's and Huntington’s diseases.

Related Articles


With support from grants from the Howard Hughes Medical Institute and the Dystonia Medical Research Foundation, the scientists found that a mutated gene associated with early onset dystonia, a severe hereditary movement disorder, normally helps manage protein folding.

The mutated gene, TOR1A (or DYT1), was linked to the disorder in 1997, but the role of its protein, torsinA, had been unknown until this finding, reported in the cover article of the February 1, 2003, issue of Human Molecular Genetics.

"We believe that torsinA and the family of torsin proteins are normally neuroprotective, used by cells as a quality control mechanism to clear proteins that have misfolded," said the lead author of the article, Guy Caldwell, assistant professor of biological sciences.

"When torsin’s protective mechanism goes awry, it results in protein aggregation, which could be a cause of neuron malfunction," he said.

Caldwell and colleagues were able to provide the first molecular explanation of torsinA's function by using the microscopic nematode roundworm Caenorhabditis elegans (C. elegans), an animal model that has aided in deciphering cellular functions for genes involved in neuronal functioning. Almost half of all human hereditary diseases, including dystonia and Parkinson's disease, have been linked to genetic components also found in C elegans, according to Caldwell.

While early onset dystonia is rare and characterized by twisting contortions, muscle contractions, or abnormal postures that begin in childhood, dystonia diseases are the third most common movement disorders.

"Dystonia is possibly a consequence of the inability of neurons to properly respond to environmental or physiological stress-induced changes in protein structure," Caldwell said. "Specific changes in torsin activity may render cells more susceptible to such stresses."

These findings further suggest that malfunctioning torsin proteins may play a role in a number of diseases that feature abnormal aggregations of protein. For example, torsin has been found in protein clumps known as Lewy bodies in the brains of patients with Parkinson's disease, Caldwell said.

"Failure of proteins to adopt their proper structure is a common cause of neuronal dysfunction, and many diseases of the nervous system involve aggregates, or clumps, of protein forming in cells," he explained.

The researchers transplanted the green fluorescent protein (GFP) that causes jellyfish to glow into C elegans and induced it to form misfolded protein aggregates. Introducing functioning torsinA into the worm significantly reduced the fluorescent protein clumps, whereas worms genetically altered to produce a mutated form of torsin similar to that associated with dystonia were unable to suppress the formation of protein clumps. "Torsin activity appears to be conserved across species, from humans to worms," Caldwell said.

This successful experimental technique opens the door to a number of new investigative avenues, the scientists say. Their lab has already genetically engineered a fusion between GFP and a human protein, alpha-synuclein, implicated in Parkinson's disease, and early findings show "torsins are equally effective in suppressing alpha-synuclein aggregation in worms," Caldwell said.

The work also raises the question of whether torsins might be useful as a therapeutic drug to prevent protein clumping, the researchers say. "There is a potential for torsins as molecules that serve a more general neuroprotective function in preventing misfolding of proteins within cells," Caldwell said. "They may have promise as a novel class of therapeutics for diseases in which misfolded protein aggregates are suspected to be a causative factor, such as Parkinson’s, Alzheimer’s, spinocerebellar ataxias, and Huntington’s.”

The study's co-authors are all members of Caldwell's lab. They include Kim Caldwell, Songsong Cao, Elaina Sexton, Christopher Gelwix, and John Paul Bevel. The lab recently was named one of 11 worldwide to receive a research grant from the Michael J. Fox Foundation for Parkinson’s Research.


Story Source:

The above story is based on materials provided by Howard Hughes Medical Institute. Note: Materials may be edited for content and length.


Cite This Page:

Howard Hughes Medical Institute. "Protein Linked To Movement Disorders." ScienceDaily. ScienceDaily, 31 January 2003. <www.sciencedaily.com/releases/2003/01/030131075711.htm>.
Howard Hughes Medical Institute. (2003, January 31). Protein Linked To Movement Disorders. ScienceDaily. Retrieved April 20, 2015 from www.sciencedaily.com/releases/2003/01/030131075711.htm
Howard Hughes Medical Institute. "Protein Linked To Movement Disorders." ScienceDaily. www.sciencedaily.com/releases/2003/01/030131075711.htm (accessed April 20, 2015).

Share This


More From ScienceDaily



More Mind & Brain News

Monday, April 20, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Our Love Of Puppy Dog Eyes Explained By Science

Our Love Of Puppy Dog Eyes Explained By Science

Newsy (Apr. 17, 2015) Researchers found a spike in oxytocin occurs in both humans and dogs when they gaze into each other&apos;s eyes. Video provided by Newsy
Powered by NewsLook.com
Scientists Find Link Between Gestational Diabetes And Autism

Scientists Find Link Between Gestational Diabetes And Autism

Newsy (Apr. 17, 2015) Researchers who analyzed data from over 300,000 kids and their mothers say they&apos;ve found a link between gestational diabetes and autism. Video provided by Newsy
Powered by NewsLook.com
Video Messages Help Reassure Dementia Patients

Video Messages Help Reassure Dementia Patients

AP (Apr. 17, 2015) Family members are prerecording messages as part of a unique pilot program at the Hebrew Home in New York. The videos are trying to help victims of Alzheimer&apos;s disease and other forms of dementia break through the morning fog of forgetfulness. (April 17) Video provided by AP
Powered by NewsLook.com
Common Pain Reliever Might Dull Your Emotions

Common Pain Reliever Might Dull Your Emotions

Newsy (Apr. 16, 2015) Each week, millions of Americans take acetaminophen to dull minor aches and pains. Now researchers say it might blunt life&apos;s highs and lows, too. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins