Featured Research

from universities, journals, and other organizations

Carnegie Mellon, NASA To Develop Robot Illustrating How To Seek Life On Distant Planets

Date:
April 2, 2003
Source:
Carnegie Mellon University
Summary:
A team of Carnegie Mellon University and NASA scientists will travel to the Atacama Desert in northern Chile in April to conduct research that will help them develop and deploy a robot and instruments that may someday enable other robots to find life on Mars. The researchers will be using the Atacama, described as the most arid region on Earth, as a Martian analog.

PITTSBURGH -- A team of Carnegie Mellon University and NASA scientists will travel to the Atacama Desert in northern Chile in April to conduct research that will help them develop and deploy a robot and instruments that may someday enable other robots to find life on Mars. The researchers will be using the Atacama, described as the most arid region on Earth, as a Martian analog.

The group is funded with a $3 million, three-year grant from NASA to the university's Robotics Institute. They are collaborating with scientists at Carnegie Mellon's Molecular Biosensor and Imaging Center who have a separate $900,000 grant from NASA to develop fluorescent dyes and automated microscopes that the robot will eventually use to locate various forms of life.

The project falls under NASA's Astrobiology Science and Technology for Exploring Planets or ASTEP program, which concentrates on pushing the limits of technology in harsh environments. NASA experts believe that by pushing the known limits of life on Earth scientists will be better prepared to search for life on other worlds.

"Our goal is to make genuine discoveries about the limits of life on Earth and to generate knowledge that can be applied to future NASA missions to Mars," said project leader David Wettergreen, a research scientist at Carnegie Mellon's Robotics Institute. "We will conduct three annual field experiments in the Atacama. Each time, an increasingly capable robot will use sensing and intelligence to find land forms or environmental conditions that could harbor life."

This year, the team will be using an autonomous, solar-powered robot named Hyperion to determine the optimum design, software and instrumentation for a new robot that will be used in the more extensive experiments to be conducted over the next two years. In 2001, Hyperion was taken to Devon Island in the Canadian Arctic where it successfully demonstrated a concept called Sun-Synchronous Navigation. It tracked the sun as a source of power and explored its surroundings as it traveled continuously through a 24-hour period of daylight.

During this year's visit to the Atacama, researchers will focus on measurements and experiments with the robot's hardware and software components. They will test Hyperion as it travels through the desert and collect data with scientific instruments, including a fluorescence imager, near-infrared spectrometer and a high-resolution panoramic imager.

Wettergreen said that Hyperion would travel some 10 kilometers through the desert this year while the researchers study issues related to robotic autonomy. The robot's solar panels have been laid flat on top of its body for the upcoming experiments so it can capture the maximum amount of sunlight in the equatorial environment. In the Arctic, the panels were mounted vertically, like sails on a boat, because the sun was often low on the horizon.

A next generation robot, developed from the findings of this year's work, should perform 50 kilometers of autonomous traverse in the desert in 2004. In 2005, the final year of the project, a robot equipped with a full array of instruments should operate autonomously as it travels 200 kilometers over a two-month period. During this climactic journey, the robot should map sites where life is abundant, and then move into drier areas where life has not been detected.

In 2005, plans call for the science team to operate as if it were exploring Mars in a scenario that would include a time delay and limited communication. "We'll operate under the constraints of Martian exploration in order to better develop procedures for seeking life on another planet," Wettergreen said. "The robot will monitor its own power, balance, locomotion, communication and science operations as it goes. It needs to be able to move into unknown terrain using cameras and internal sensors--the same instruments and information that would be available to a robot exploring Mars."

In addition to Wettergreen, the Carnegie Mellon team heading to the Atacama includes William L. "Red" Whittaker, the Robotics Institute's Fredkin research professor and the project's principal investigator; Alan S. Waggoner, professor of biological sciences and director of Molecular Biosensor and Imaging Center; James P. Teza, research engineer; Michael D. Wagner, research programmer, and Robotics Institute doctoral students Christopher Urmson, Paul Tompkins, Denis Strelow and Vandi Verma.

Nathalie Cabrol, a planetary scientist at NASA's Ames Research Center and the SETI Institute, will lead the science team for the investigation of the Atacama. Members of the science team are geologists and biologists who study both Earth and Mars at institutions including NASA Ames and the Johnson Space Center, SETI Institute, Jet Propulsion Laboratory, the University of Arizona, the University of Tennessee, Carnegie Mellon and Universidad Catolica del Norte (Chile).

"Their role in the first-year campaign will be to become acquainted with the data sent by the rover and assess the validity of astrobiological exploration strategies that will be used in the 2004 and 2005 field campaigns and on future missions to search for habitats and life on Mars," said Cabrol.

Also under development is the capability for education and science communities to experience the mission through the EventScope interface (www.eventscope.org). EventScope converts data from rovers and orbiters into three-dimensional "virtual worlds" that realistically represent remote sites, enabling students to experience the mission from their classroom computers.

EventScope's team is directed by Peter Coppin, a research scientist at Carnegie Mellon's STUDIO for Creative Inquiry, and includes experts in software engineering, interactive art and educational technology working to develop next generation tools for public remote experience. The goal is to have hundreds of students participating remotely in the Atacama experiment by the end of 2005.

###

For more information, updates and images from the Atacama beginning April 7 visit: http://www.frc.ri.cmu.edu/atacama. For more information on the Molecular Biosensor and Imaging Center and the fluorescent dyes being developed there, see: http://www.cmu.edu/PR/releases03/030210_mars.html.


Story Source:

The above story is based on materials provided by Carnegie Mellon University. Note: Materials may be edited for content and length.


Cite This Page:

Carnegie Mellon University. "Carnegie Mellon, NASA To Develop Robot Illustrating How To Seek Life On Distant Planets." ScienceDaily. ScienceDaily, 2 April 2003. <www.sciencedaily.com/releases/2003/04/030402072022.htm>.
Carnegie Mellon University. (2003, April 2). Carnegie Mellon, NASA To Develop Robot Illustrating How To Seek Life On Distant Planets. ScienceDaily. Retrieved September 15, 2014 from www.sciencedaily.com/releases/2003/04/030402072022.htm
Carnegie Mellon University. "Carnegie Mellon, NASA To Develop Robot Illustrating How To Seek Life On Distant Planets." ScienceDaily. www.sciencedaily.com/releases/2003/04/030402072022.htm (accessed September 15, 2014).

Share This



More Space & Time News

Monday, September 15, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

NASA’s Curiosity Rover Finally Reaches Long-Term Goal

NASA’s Curiosity Rover Finally Reaches Long-Term Goal

Newsy (Sep. 15, 2014) — After more than two years, NASA’s Mars Curiosity Rover reached Mount Sharp, its long-term destination. Video provided by Newsy
Powered by NewsLook.com
SpaceX's Elon Musk Really Wants To Colonize Mars

SpaceX's Elon Musk Really Wants To Colonize Mars

Newsy (Sep. 14, 2014) — Elon Musk has been talking about his goal of colonizing Mars for years now, but how much of it does he actually have figured out, and is it possible? Video provided by Newsy
Powered by NewsLook.com
International Space Station Crew Returns Safely To Earth

International Space Station Crew Returns Safely To Earth

Newsy (Sep. 11, 2014) — The three-man crew touched down in Kazakhstan Wednesday after more than five months of science experiments in orbit. Video provided by Newsy
Powered by NewsLook.com
Solar Storm To Hit This Weekend, Scientists Not Worried

Solar Storm To Hit This Weekend, Scientists Not Worried

Newsy (Sep. 11, 2014) — Two solar flares which erupted in our direction this week will arrive this weekend. The resulting solar storm will be powerful but not dangerous. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins