Featured Research

from universities, journals, and other organizations

Using Ground-Penetrating Radar To Estimate Tree Root Biomass

Date:
September 25, 2003
Source:
Southern Research Station - USDA Forest Service
Summary:
USDA Forest Service (FS) researchers are improving the use of ground-penetrating radar (GPR) to study tree roots nondestructively. They are refining GPR's processing capabilities by comparing results with those of more invasive methods.

USDA Forest Service (FS) researchers are improving the use of ground-penetrating radar (GPR) to study tree roots nondestructively. They are refining GPR's processing capabilities by comparing results with those of more invasive methods.

GPR is an electromagnetic imaging technique that can be used to detect buried objects or hidden structures. GPR has been used for geological research, archaeology, forensics, and for assessing the integrity of roads and bridges. FS researchers soon recognized the potential for using the technology in forest-based research.

Measuring the belowground growth of trees is essential to understanding forest productivity and carbon allocation. Estimating the biomass of tree roots traditionally involves using soil cores, pits, and trenches--digging up roots, then sieving, washing, drying, and weighing them. These methods are destructive, labor-intensive, and not very useful for measuring the lateral extent of a root system.

In the September/October issue of the Soil Science Society of America Journal (SSSAJ), researchers from the FS Southern Research Station (SRS) unit in Research Triangle Park, NC present the results of a study that assesses ground penetrating radar (GPR) as a fast, noninvasive method to improve estimates of root biomass.

"Knowing both the volume and extent of root systems is important in the carbon sequestration studies we do," says Kurt Johnsen, director of the SRS Biological Foundations of Southern Forest Productivity and Sustainability unit, and co-author of the article with John Butnor and Lance Kress. "Many of the forests in the Southeast grow on land where the soil carbon has been depleted by former farming practices. In these forests, tree roots are the most dynamic pool for carbon accumulation below the ground."

For the carbon flux experiments that Johnsen and fellow researchers conduct at the Free Air Carbon Dioxide Enrichment (FACE) sites in the Duke Forest, they use a sophisticated dynamic gas sampling system to measure the effects of elevated levels of carbon dioxide on living trees. Although they can detect variability above the ground without harming the trees, it is almost impossible to know what is going on below ground. "We need a way to measure how the root system is responding that does not involve destroying it," said Johnsen.

John Butnor, SRS plant physiologist and lead author of the SSSAJ article, has been experimenting with ways to make GPR more accurate by improving the quality of the data through advanced processing techniques, and by calibrating GPR estimates with those from soil cores.

"There are a variety of factors that can affect the resolution of radar profiles of roots. Soil composition can cause background noise that interferes with resolution and alters the results," says Butnor. "For this study, we wanted to look at the full potential of GPR, so we chose a site with soil composition amenable to radar investigations--one with electrically resistive soil of high sand content."

In collaboration with Lisa Samuelson (Auburn University), Butnor and the other researchers used a previously established International Paper study site in Georgia, setting out sample points on plots of loblolly pine that had been fertilized or irrigated or both. For GPR sampling, they passed the radar antenna across in one direction, then the other, electronically marking sampling points on the radar profile. When they finished GPR sampling, the researchers collected soil cores at the sampling points, weighing the washed and dried roots to determine total live biomass.

Butnor found that adding advanced digital processing techniques greatly improved the ability of GPR to accurately estimate root biomass. He was also able to correct for the distorting effects he found in the fertilized plots.

"By closely matching the footprint of the radar antenna to the location of the soil core, we were able to improve root biomass estimation significantly over our previous studies," says Butnor. "The ability to correlate radar data to actual root biomass gives greater confidence in the technique and allows us to continue to make improvements."

The researchers concluded that, in the right conditions, GPR can be used to rapidly estimate root biomass, dramatically reducing the number of soil cores that are usually needed and providing a much clearer picture of the lateral root system as it spreads out beneath the ground.

"We have shown that GPR works very accurately on well-drained soils," says Johnsen. "In a four-hour period, we can collect as much data using GPR as collected from thousands of core samples. More recently we have used GPR on flatwood sites in Florida and on heavy organic matter sites in Canada. We believe that GPR will become a standard tool in forest research, and will someday allow us to do rapid, nondestructive root assessment across many soil types. "

###

Full text of the article: http://www.srs.fs.usda.gov/pubs/viewpub.jsp?index=5563

Additional authors on the SSAJ paper were J. A. Doolittle, USDA National Conservation Research Service, and L. Samuelson and T. Stokes, School of Forestry and Wildlife Sciences, Auburn University.


Story Source:

The above story is based on materials provided by Southern Research Station - USDA Forest Service. Note: Materials may be edited for content and length.


Cite This Page:

Southern Research Station - USDA Forest Service. "Using Ground-Penetrating Radar To Estimate Tree Root Biomass." ScienceDaily. ScienceDaily, 25 September 2003. <www.sciencedaily.com/releases/2003/09/030925065001.htm>.
Southern Research Station - USDA Forest Service. (2003, September 25). Using Ground-Penetrating Radar To Estimate Tree Root Biomass. ScienceDaily. Retrieved September 16, 2014 from www.sciencedaily.com/releases/2003/09/030925065001.htm
Southern Research Station - USDA Forest Service. "Using Ground-Penetrating Radar To Estimate Tree Root Biomass." ScienceDaily. www.sciencedaily.com/releases/2003/09/030925065001.htm (accessed September 16, 2014).

Share This



More Plants & Animals News

Tuesday, September 16, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Some Tobacco Farmers Thrive Amid Challenges

Some Tobacco Farmers Thrive Amid Challenges

AP (Sep. 16, 2014) The South's tobacco country is surviving, and even thriving in some cases, as demand overseas keeps growers in the fields of one of America's oldest cash crops. (Sept. 16) Video provided by AP
Powered by NewsLook.com
Scientists Given Rare Glimpse of 350-Kilo Colossal Squid

Scientists Given Rare Glimpse of 350-Kilo Colossal Squid

AFP (Sep. 16, 2014) Scientists say a female colossal squid weighing an estimated 350 kilograms (770 lbs) and thought to be only the second intact specimen ever found was carrying eggs when discovered in the Antarctic. Duration: 00:47 Video provided by AFP
Powered by NewsLook.com
Raw: Scientists Examine Colossal Squid

Raw: Scientists Examine Colossal Squid

AP (Sep. 16, 2014) Squid experts in New Zealand thawed and examined an unusual catch on Tuesday: a colossal squid. It was captured in Antarctica's remote Ross Sea in December last year and has been frozen for eight months. (Sept. 16) Video provided by AP
Powered by NewsLook.com
Ivorians Abandon Monkey Pets in Fear Over Ebola Virus

Ivorians Abandon Monkey Pets in Fear Over Ebola Virus

AFP (Sep. 16, 2014) Since the arrival of Ebola in Ivory Coast, Ivorians have been abandoning their pets, particularly monkeys, in the fear that they may transmit the virus. Duration: 00:47 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

    Environment News

      Technology News



      Save/Print:
      Share:

      Free Subscriptions


      Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

      Get Social & Mobile


      Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

      Have Feedback?


      Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
      Mobile: iPhone Android Web
      Follow: Facebook Twitter Google+
      Subscribe: RSS Feeds Email Newsletters
      Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins