Featured Research

from universities, journals, and other organizations

Fractal-shaped Tiles Developed For New Broadband Antenna Class

Date:
October 20, 2003
Source:
Penn State
Summary:
Penn State engineers have developed innovative design methods for a new class of antennas composed of an array of fractal-shaped tiles that offer anywhere from a 4:1 to 8:1 improvement in bandwidth compared to their conventional counterparts.

Penn State engineers have developed innovative design methods for a new class of antennas composed of an array of fractal-shaped tiles that offer anywhere from a 4:1 to 8:1 improvement in bandwidth compared to their conventional counterparts.

Many natural objects, such as tree branches and their root systems, peaks and valleys in a landscape and rivers and their tributaries are versions of mathematical fractals which appear pleasingly irregular to the eye but are actually made of self-similar, repeated units.

The new broadband antennas are composed of irregular but self-similar, repeated fractal-shaped unit tiles or "fractiles" which cover an entire plane without any gaps or overlaps. The outer boundary contour of an array built of fractiles follows a fractal distribution.

Dr. Douglas H. Werner, professor of electrical engineering and senior scientist in Penn State's Applied Research Laboratory, will describe the new antennas and their generation at the 2003 IEEE AP-S Topical Conference on Wireless Communication Technology, Oct. 16, in Honolulu, Hawaii. His paper is "A New Design Methodology for Modular Broadband Arrays Based on Fractal Tilings." His co-authors are Waroth Kuhirun, graduate student, and Dr. Pingjuan Werner, associate professor of electrical engineering.

While fractal concepts have been used previously in antenna design, Werner and his research team are the first to introduce a design approach for broadband phased array antenna systems that combines aspects of tiling theory with fractal geometry.

Once the specific fractile array has been designed, the Penn State team exploits the fact that fractal arrays are generated recursively or via successive stages of growth starting from a simple initial unit, to develop fast recursive algorithms for calculating radiation patterns. Using the recursive property, they have also developed rapid algorithms for adaptive beam forming, especially for arrays with multiple stages of growth that contain a relatively large number of elements.

Werner says, "The availability of fast beam forming algorithms is especially advantageous for designing smart antenna systems." The Penn State team has also shown that a fractile array made of unit tiles based on the Peano-Gosper curve, for example, offers performance advantages over a similar-sized array with conventional square boundaries. The Peano-Gosper fractile array produces no grating lobes over a much wider frequency band than conventional periodic planar square arrays.

Werner explains that "Grating lobes are sidelobes with the same intensity as the mainbeam. They are undesirable because they take energy away from the main beam and focus it in unintended directions, causing a reduction in the gain of an antenna array." The University is patenting the team's approach to Peano-Gosper and related fractile arrays. The team has also been awarded a grant through the Applied Research Laboratory to build and test a prototype.


Story Source:

The above story is based on materials provided by Penn State. Note: Materials may be edited for content and length.


Cite This Page:

Penn State. "Fractal-shaped Tiles Developed For New Broadband Antenna Class." ScienceDaily. ScienceDaily, 20 October 2003. <www.sciencedaily.com/releases/2003/10/031020054315.htm>.
Penn State. (2003, October 20). Fractal-shaped Tiles Developed For New Broadband Antenna Class. ScienceDaily. Retrieved April 21, 2014 from www.sciencedaily.com/releases/2003/10/031020054315.htm
Penn State. "Fractal-shaped Tiles Developed For New Broadband Antenna Class." ScienceDaily. www.sciencedaily.com/releases/2003/10/031020054315.htm (accessed April 21, 2014).

Share This



More Matter & Energy News

Monday, April 21, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Why Did Nike Fire Most Of Its Nike FuelBand Team?

Why Did Nike Fire Most Of Its Nike FuelBand Team?

Newsy (Apr. 19, 2014) Nike fired most of its Digital Sport hardware team, the group behind Nike's FuelBand device. Could Apple or an overcrowded market be behind layoffs? Video provided by Newsy
Powered by NewsLook.com
Small Reactors Could Be Future of Nuclear Energy

Small Reactors Could Be Future of Nuclear Energy

AP (Apr. 17, 2014) After the Fukushima nuclear disaster, the industry fell under intense scrutiny. Now, small underground nuclear power plants are being considered as the possible future of the nuclear energy. (April 17) Video provided by AP
Powered by NewsLook.com
Horseless Carriage Introduced at NY Auto Show

Horseless Carriage Introduced at NY Auto Show

AP (Apr. 17, 2014) An electric car that proponents hope will replace horse-drawn carriages in New York City has also been revealed at the auto show. (Apr. 17) Video provided by AP
Powered by NewsLook.com
Honda's New ASIMO Robot, More Human-Like Than Ever

Honda's New ASIMO Robot, More Human-Like Than Ever

AFP (Apr. 17, 2014) It walks and runs, even up and down stairs. It can open a bottle and serve a drink, and politely tries to shake hands with a stranger. Meet the latest ASIMO, Honda's humanoid robot. Duration: 00:54 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins