Featured Research

from universities, journals, and other organizations

Brain Maps Perceptions, Not Reality

Date:
November 4, 2003
Source:
Vanderbilt University
Summary:
When we experience an illusion, we usually have the impression we have been fooled, or that our minds are playing tricks on us. New research published in the Oct. 31 issue of the journal Science indicates our perceptions of these illusions are no hoax, but the result of how the brain is organized to process the information it receives from our senses.

NASHVILLE, Tenn. – When we experience an illusion, we usually have the impression we have been fooled, or that our minds are playing tricks on us. New research published in the Oct. 31 issue of the journal Science indicates our perceptions of these illusions are no hoax, but the result of how the brain is organized to process the information it receives from our senses.

Vanderbilt University psychology department researchers Anna Wang Roe, Li Min Chen and Robert Friedman have identified responses in the brain to a touch illusion that shed new light on how the brain processes sensory information and call into question long-held theories about the nature of the "map" of the body in the brain.

Walter Penfield is credited with first establishing in 1957 that a map of the human body exists in the brain, with specific areas of the cortex processing information from different body areas. Researchers have long hypothesized this map is a topographic map of the physical body.

"What is surprising about this paper is we found the cortical map reflects our perceptions, not the physical body," Roe said. "The brain is reflecting what we are feeling, even if that's not what really happened." The team completed the research at Yale University before moving to Vanderbilt this fall.

Roe's research used a well-documented illusion called the tactile funneling illusion to explore how the brain processes touch. With this illusion, an individual perceives simultaneous touches to multiple locations on an area of skin as a single touch at the center of that area. Although the perception of this illusion has been studied for decades, researchers did not know how it was processed by the brain.

Roe's team first tested the funneling illusion in humans by stimulating adjacent fingers. The human subjects confirmed that they experienced a sensation between the two fingers when both were touched simultaneously. The team then used a technique called intrinsic signal optical imaging to study the reaction to the same illusion in the brains of squirrel monkeys. Intrinsic signal optical imaging uses a specially designed video camera to detect changes in light reflectance viewed through a "window on the brain." These cortical reflectance changes are related to changes in blood flow that occur when neurons respond to specific sensory stimuli.

When the monkeys were touched on one digit alone, the researchers observed a response in Area 3b of the somatosensory cortex, the area previously determined to process information from that digit. When an adjacent digit was stimulated on its own, a response was seen in the cortical map for that digit. However, when the monkey was touched simultaneously on both digits, a single cortical location between the maps of the two individual digits responded, explaining the perceived location of the illusion. In addition, the perceived intensity of this illusion is caused by the integration of activity across all three locations (two actual, one illusory).

"The merger of signals from adjacent fingers demonstrated in this elegant study may serve an important function in hand use," Esther Gardner, professor of physiology and neuroscience at NYU School of Medicine, said. "It allows the fingers to be controlled as a single functional group centered opposite the thumb when grasping large objects, rather than as distinct individuals." In addition to establishing that the cortical map reflects perception rather than physical location, the researchers found the brain processes touch perceptions at an unexpectedly early stage.

"The cortical area we studied, 3b, is an early entry level in the cortex for information from the skin," said Friedman. "We did not expect to see perception being reflected that early. This gives us a much better understanding of how much work the brain is doing, even at this early level of processing."

"How we perceive the world is an enduring question in neuroscience," Mriganka Sur, head of the Massachusetts Institute of Technology Department of Brain and Cognitive Sciences, said. "This is a fascinating study that cleverly uses a tactile illusion to demonstrate that the brain's representations of the world, and of sensory stimuli that impinge on us, are shaped by the brain's circuitry. In short, our perceptions have a great deal to do with the way our brains are wired."

Roe's team will continue to study how the brain processes sensory input and illusions, though Roe cautions against misinterpretation of that term. "Illusions are not unusual or strange--they are how we interpret the world," Roe said. "We think we know what's out there in the physical world, but it's all interpreted by our brains. Everything we sense is an illusion to a degree."


Story Source:

The above story is based on materials provided by Vanderbilt University. Note: Materials may be edited for content and length.


Cite This Page:

Vanderbilt University. "Brain Maps Perceptions, Not Reality." ScienceDaily. ScienceDaily, 4 November 2003. <www.sciencedaily.com/releases/2003/11/031104063920.htm>.
Vanderbilt University. (2003, November 4). Brain Maps Perceptions, Not Reality. ScienceDaily. Retrieved April 20, 2014 from www.sciencedaily.com/releases/2003/11/031104063920.htm
Vanderbilt University. "Brain Maps Perceptions, Not Reality." ScienceDaily. www.sciencedaily.com/releases/2003/11/031104063920.htm (accessed April 20, 2014).

Share This



More Mind & Brain News

Sunday, April 20, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Study On Artists' Brain Shows They're 'Structurally Unique'

Study On Artists' Brain Shows They're 'Structurally Unique'

Newsy (Apr. 17, 2014) The brains of artists aren't really left-brain or right-brain, but rather have extra neural matter in visual and motor control areas. Video provided by Newsy
Powered by NewsLook.com
Is Apathy A Sign Of A Shrinking Brain?

Is Apathy A Sign Of A Shrinking Brain?

Newsy (Apr. 17, 2014) A recent study links apathetic feelings to a smaller brain. Researchers say the results indicate a need for apathy screening for at-risk seniors. Video provided by Newsy
Powered by NewsLook.com
Are School Dress Codes Too Strict?

Are School Dress Codes Too Strict?

AP (Apr. 16, 2014) Pushing the limits on style and self-expression is a rite of passage for teens and even younger kids. How far should schools go with their dress codes? The courts have sided with schools in an era when school safety is paramount. (April 16) Video provided by AP
Powered by NewsLook.com
Could Even Casual Marijuana Use Alter Your Brain?

Could Even Casual Marijuana Use Alter Your Brain?

Newsy (Apr. 16, 2014) A new study conducted by researchers at Northwestern and Harvard suggests even casual marijuana use can alter your brain. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins