Featured Research

from universities, journals, and other organizations

Blood-forming Stem Cells Fail To Repair Heart Muscle In Stanford Study

Date:
March 22, 2004
Source:
Stanford University Medical Center
Summary:
A new study adds a twist to the ongoing debate over using blood-forming stem cells to repair heart muscle. In the March 21 online issue of Nature, researchers at the Stanford University School of Medicine report that the cells are unable to replace heart muscle after a heart attack, which refutes earlier findings.

STANFORD, Calif. - A new study adds a twist to the ongoing debate over using blood-forming stem cells to repair heart muscle. In the March 21 online issue of Nature, researchers at the Stanford University School of Medicine report that the cells are unable to replace heart muscle after a heart attack, which refutes earlier findings.

Related Articles


During the past three years, several groups had reported that stem cells found in bone marrow could lodge in the heart and repair muscle damaged by a heart attack. These stem cells normally reside in the bone marrow, where they constantly replenish red blood cells and immune cells. If the earlier findings were correct and the blood-forming stem cells switched their fates, that could reveal an exciting new path for treating heart attack patients.

"We started out attempting to validate and extend those findings," said Leora Balsam, MD, a research fellow working with Robert Robbins, MD, associate professor of cardiothoracic surgery.

Instead of supporting previous findings, however, her experiments contradicted them. She found that in mice, blood-forming stem cells lodge in damaged hearts but retain the form of blood cells rather than transforming into muscle cells. A paper by another research group in the same issue of Nature supports Balsam's findings using slightly different methods.

The question now is why some studies have found that blood-forming stem cells can repair the heart while others show that those adult stem cells retain their blood-forming fate. The question is particularly timely given that human trials are already under way based on the strength of earlier findings refuted by the new research.

"If we are delivering bone marrow to patients with the expectation that it will regenerate the heart, that may not be realistic," Balsam said.

One difference between Balsam's study and previous experiments is the type of bone marrow cells she used. Amy Wagers, PhD, a postdoctoral scholar in the lab of Irving Weissman, MD, the Karel and Avice Beekhuis Professor of Cancer Biology, took whole bone marrow from mice then isolated several purified groups of cells, including a highly purified subset of stem cells that can go on to form all blood cell types. Previous experiments had only used less purified cells.

Balsam injected those cells directly into the heart muscle of 23 mice in which she had induced a heart attack. The injected cells produced a green protein that is easily visible under a microscope. She then examined the heart muscles of those mice 10 days and 30 days after the injection to search for signs of transplanted blood-forming stem cells.

At 10 days she saw clusters of green cells, but none of them made proteins typical of heart muscle. However, the green cells did produce proteins commonly made by blood cells. By 30 days, very few green cells remained in the heart, and those that did still produced blood proteins rather than heart muscle proteins.

Balsam found that 30 days after injecting the blood-forming stem cells, the mice died at the same rate as those in another group that received only water after their induced heart attacks. Even though the transplanted stem cells didn't help the mice survive, the stem cell-injected group did have slight improvements in how well their hearts pumped blood.

Robbins, who is lead author of the study, said even with these results, adult stem cells may offer some potential for treating damaged hearts. "Maybe these cells don't need to differentiate," he said.

Robbins said the transplanted blood-forming cells may recruit new blood vessels to the damaged tissues. These new blood vessels may keep heart muscle cells alive that would otherwise have died, thus indirectly rescuing the heart. By genetically engineering those cells to make additional factors to recruit blood vessels, they may become part of a successful therapy, Robbins said.

Researchers are also examining embryonic stem cells and immature skeletal muscle cells as possible candidates for repairing heart muscle. Robbins and other members of his lab are looking into these alternative ways of repairing heart muscle.

"We're all interested in finding ways of regenerating the heart," Balsam said. "I think what this study points out is that it's not easy."


Story Source:

The above story is based on materials provided by Stanford University Medical Center. Note: Materials may be edited for content and length.


Cite This Page:

Stanford University Medical Center. "Blood-forming Stem Cells Fail To Repair Heart Muscle In Stanford Study." ScienceDaily. ScienceDaily, 22 March 2004. <www.sciencedaily.com/releases/2004/03/040322080606.htm>.
Stanford University Medical Center. (2004, March 22). Blood-forming Stem Cells Fail To Repair Heart Muscle In Stanford Study. ScienceDaily. Retrieved October 25, 2014 from www.sciencedaily.com/releases/2004/03/040322080606.htm
Stanford University Medical Center. "Blood-forming Stem Cells Fail To Repair Heart Muscle In Stanford Study." ScienceDaily. www.sciencedaily.com/releases/2004/03/040322080606.htm (accessed October 25, 2014).

Share This



More Health & Medicine News

Saturday, October 25, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

IKEA Desk Converts From Standing to Sitting With One Button

IKEA Desk Converts From Standing to Sitting With One Button

Buzz60 (Oct. 24, 2014) IKEA is out with a new convertible desk that can convert from a sitting desk to a standing one with just the push of a button. Jen Markham explains. Video provided by Buzz60
Powered by NewsLook.com
Ebola Protective Suits Being Made in China

Ebola Protective Suits Being Made in China

AFP (Oct. 24, 2014) A factory in China is busy making Ebola protective suits for healthcare workers and others fighting the spread of the virus. Duration: 00:38 Video provided by AFP
Powered by NewsLook.com
WHO: Millions of Ebola Vaccine Doses by 2015

WHO: Millions of Ebola Vaccine Doses by 2015

AP (Oct. 24, 2014) The World Health Organization said on Friday that millions of doses of two experimental Ebola vaccines could be ready for use in 2015 and five more experimental vaccines would start being tested in March. (Oct. 24) Video provided by AP
Powered by NewsLook.com
Doctor in NYC Quarantined With Ebola

Doctor in NYC Quarantined With Ebola

AP (Oct. 24, 2014) An emergency room doctor who recently returned to the city after treating Ebola patients in West Africa has tested positive for the virus. He's quarantined in a hospital. (Oct. 24) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins