Featured Research

from universities, journals, and other organizations

Protein May Help Prevent Autoimmune Attacks

Date:
April 26, 2004
Source:
Washington University School Of Medicine
Summary:
A possibly important ally of the immune system that can help with the tricky task of separating friend from foe has been identified by scientists at Washington University School of Medicine in St. Louis.

St. Louis, April 21, 2004 -- A possibly important ally of the immune system that can help with the tricky task of separating friend from foe has been identified by scientists at Washington University School of Medicine in St. Louis.

Related Articles


Researchers showed that a protein known as H2-DM can keep immune system T cells from erroneously assaulting the body's own tissues. Distinguishing between foreign and native is one of the immune system's most important tasks; failure to make this distinction can lead the immune system to attack the body, causing autoimmune conditions like diabetes, lupus, arthritis and multiple sclerosis.

"This protein may be one of the components that goes awry when the immune system's normal inflammatory processes malfunction, leading some T cells to attack the body," says Scott Lovitch, an M.D./Ph.D. student at Washington University and member of the research team. The work will be published this week in the journal Immunity.

Lovitch works in the laboratories of the study's principal investigator, Emil R. Unanue, M.D., the Edward Mallinckrodt Professor and head of the Department of Pathology and Immunology. Unanue's research team studies a group of T cells known as type B T cells.

"During development, as the body begins building its arsenal of T cells to attack various types of invaders, any T cells that attack the body's own tissues are supposed to be deleted," Lovitch explains. "However, our laboratory determined that some of these self-reactive T cells don't get eradicated. These cells are known as type B T cells."

T cells normally go on the attack when other cells known as antigen-presenting cells supply evidence of a foreign invasion. This evidence takes the form of protein bits on the surface of antigen-presenting cells. Based on its inspection of these protein bits, a T cell will either remain inactive or start multiplying in preparation for an attack.

The protein bits are displayed in molecules collectively known as the major histocompatibility complex (MHC). Unanue's lab previously found evidence that type B T cell attacks on the body's own tissues were linked to slight changes in ways the MHC displays bits of protein.

A piece of one of the body's own proteins displayed in the MHC might not normally provoke a type B T cell, for example. But that same protein part displayed in a slightly altered form of the MHC changes what the T cell "sees," possibly leading the T cell to attack.

Lovitch developed a test tube approach for inserting proteins into specific compartments of antigen-presenting cells. He found that when the proteins were given to a compartment in the cell known as an endosome, the proteins were displayed by the MHC in a fashion that could provoke type B T cells. However, when they were given to another compartment known as a lysosome, the MHC-protein display failed to provoke the type B T cells.

Scientists then tried the experiment in cells in which the gene for the H2-DM protein had been removed. H2-DM is common in lysosomes but rare in endosomes, and other scientists have shown that high-acidity environments like the lysosome increase H2-DM's activity levels.

In this experiment, they found that antigen presenting cells could provoke a reaction in type B T cells regardless of which compartment received the protein.

"These results suggest that H2-DM appears to be playing an editing role in the lysosome, blocking the pathway that leads to an MHC-protein complex that can cause a response from type B T cells," Lovitch says.

To further investigate the potential links between H2-DM, type B T cells, and autoimmune disease, Lovitch and others in Unanue's lab have produced a genetically altered mouse that only has type B T cells. They plan to study these mice to determine whether normal inflammation can provoke an autoimmune reaction in the T cells, leading to conditions similar to diabetes.

###

Pu Z, Lovitch SB, Bikoff EK, Unanue ER. T Cells Distinguish MHC-Peptide Complexes Formed in Separate Vesicles Edited by H2-DM. Immunity, April 2004

Funding from the National Institutes of Health.

The full-time and volunteer faculty of Washington University School of Medicine are the physicians and surgeons of Barnes-Jewish and St. Louis Children's hospitals. The School of Medicine is one of the leading medical research, teaching and patient care institutions in the nation, currently ranked second in the nation by U.S. News & World Report. Through its affiliations with Barnes-Jewish and St. Louis Children's hospitals, the School of Medicine is linked to BJC HealthCare.


Story Source:

The above story is based on materials provided by Washington University School Of Medicine. Note: Materials may be edited for content and length.


Cite This Page:

Washington University School Of Medicine. "Protein May Help Prevent Autoimmune Attacks." ScienceDaily. ScienceDaily, 26 April 2004. <www.sciencedaily.com/releases/2004/04/040421232724.htm>.
Washington University School Of Medicine. (2004, April 26). Protein May Help Prevent Autoimmune Attacks. ScienceDaily. Retrieved December 28, 2014 from www.sciencedaily.com/releases/2004/04/040421232724.htm
Washington University School Of Medicine. "Protein May Help Prevent Autoimmune Attacks." ScienceDaily. www.sciencedaily.com/releases/2004/04/040421232724.htm (accessed December 28, 2014).

Share This


More From ScienceDaily



More Health & Medicine News

Sunday, December 28, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Healthier Lifestyles Could Prevent 4 In 10 Cancer Cases

Healthier Lifestyles Could Prevent 4 In 10 Cancer Cases

Newsy (Dec. 26, 2014) If patients had led healthier lifestyles, Cancer Research UK found about 40 percent of cancer cases could have been prevented. Video provided by Newsy
Powered by NewsLook.com
When Healthy Eating Becomes Dangerous

When Healthy Eating Becomes Dangerous

Newsy (Dec. 26, 2014) Experts say fad diets can lead to orthorexia, a disorder that can cause physical and emotional distress. Video provided by Newsy
Powered by NewsLook.com
FDA Issues New Warning About Pure Caffeine Powder Usage

FDA Issues New Warning About Pure Caffeine Powder Usage

Newsy (Dec. 24, 2014) The FDA cites two deaths this year linked to pure caffeine powder as warnings of the potentially fatal substance. Video provided by Newsy
Powered by NewsLook.com
Alarming CDC Lab Report Reveals Ebola Sample Mix-Up

Alarming CDC Lab Report Reveals Ebola Sample Mix-Up

Newsy (Dec. 24, 2014) The Centers for Disease Control and Prevention released a report claiming a lab tech in Atlanta might have been exposed to the Ebola virus. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins