Featured Research

from universities, journals, and other organizations

Low-cost Robot Could Locate Land Mines In Rugged Terrain

Date:
June 10, 2004
Source:
Johns Hopkins University
Summary:
Four Johns Hopkins undergraduate engineering students have designed and built a remote-controlled robotic vehicle to find deadly land mines in rugged terrain and mark their location with a spray of paint.

In a test run, the robotic detector rolls toward a metallic target representing a land mine.
Credit: Photo by Will Kirk

Four Johns Hopkins undergraduate engineering students have designed and built a remote-controlled robotic vehicle to find deadly land mines in rugged terrain and mark their location with a spray of paint.

The prototype has been given to professional explosive detection researchers as a model for a low-cost robot that humanitarian groups and military troops could use to prevent mine-related deaths and injuries.

The project resulted from a challenge to the students by Carl V. Nelson, a principal staff physicist at The Johns Hopkins University Applied Physics Laboratory. Nelson had developed new sensors to help detect land mines, but he needed a device to carry these sensors into areas of thick vegetation where explosives are often hidden. He presented his requirements last fall to a team of students enrolled in the two-semester Engineering Design Project course offered by the Department of Mechanical Engineering at Johns Hopkins.

"I asked the students to develop a vehicle that could get off the road, off the clear paths and go into rougher terrain like bushes and high grass, where mine detection would be difficult to do by hand," Nelson said.

The need for such a device was clear. Nelson pointed to a United Nations estimate that more than 100 million land mines are deployed in 70 countries worldwide, planted during military conflicts dating back as far as World War II. The cheap but highly dangerous devices can be set off by civilians as well as soldiers, and more than 2,000 people are killed or maimed by mine explosions each month, the United Nations estimates. Nelson is one of many researchers looking for safe, efficient and relatively inexpensive ways to locate the hazards.

To carry Nelson's sensors through rough terrain, the Johns Hopkins undergraduates designed a two-piece vehicle that rolls on tank-type treads. The front portion moves the robot, using two cordless power drill motors connected to a sealed lead-acid battery. Atop the drive segment is a color video camera, enabling a human operator to see what the robot encounters.

The drive segment is attached to a second unit that houses a simple metal detection coil obtained from an off-the-shelf treasure-hunting device.(This metal detector would be replaced by more sophisticated sensors if the model is utilized by funded researchers.) The rear segment also is equipped with a small storage tank and a spray paint nozzle to mark the spot when a possible mine is located. The vehicle can spray about 40 times before the paint tank must be recharged.

To guide the robot from a safe distance, the students constructed a battery-powered controller with a joystick to steer the vehicle. The controller also features a small video screen displaying real-time images from the robot's camera. When metal is detected, a "beep" is heard over a speaker on the controller or through headphones worn by the operator. A switch on the controller can then activate the paint sprayer to mark the spot. The robot's camera transmits video up to about 100 feet from the controller; the vehicle's movement can be controlled from a distance of about 500 feet.

The robotic vehicle was built largely with plastic and other non-metal parts to reduce costs and weight. In addition, using non-metal parts avoids triggering false positive readings from the mine detector. The two-segment design also spreads out the robot's weight, making the deviceless likely to set off a mine.

The four undergraduate inventors, all seniors, were Edoardo Biancheri, 22, of Rio De Janeiro, Brazil; Dan Hake, 21, from Wilton, Conn.; Dat Truong, 22, from Methuen, Mass.; and Landon Unninayar, 22, from Columbia, Md. Hake, Truong and Unnimayar were mechanical engineering majors who graduated from Johns Hopkins last month. Biancheri plans to complete his undergraduate studies in December with a double major in mechanical engineering and economics.

Working within a sponsored budget of $8,000, the students spent about $5,000 to design and build their prototype. They estimate the vehicle could be mass-produced for $1,000 or less, not including the cost of more sophisticated detection sensors. Nelson plans to show the prototype to his U.S. Army funding sponsors as a example of the type of low-cost mine detection robot that could help prevent death and injury worldwide. "I think the students did an excellent job," Nelson said. "They met just about all the requirements that I set out for them."

The land mine detection robot was one of nine Johns Hopkins projects completed this year by undergraduates in the engineering design course. The class is taught by Andrew F. Conn, a Johns Hopkins graduate with more than 30 years of experience in public and private research and development. Each team of three or four students, working within budgets of up to $10,000, had to design a device, purchase or fabricate the parts, and assemble the final product. Corporations, government agencies and nonprofit groups provided the assignments and funding. The course is traditionally a well-received, hands-on engineering experience for Johns Hopkins undergraduates.

###

Color video footage and photos available. View an online video about this project here: http://www.jhu.edu/news_info/news/audio-video/mediamines.html

Related link: Johns Hopkins Department of Mechanical Engineering: http://www.me.jhu.edu


Story Source:

The above story is based on materials provided by Johns Hopkins University. Note: Materials may be edited for content and length.


Cite This Page:

Johns Hopkins University. "Low-cost Robot Could Locate Land Mines In Rugged Terrain." ScienceDaily. ScienceDaily, 10 June 2004. <www.sciencedaily.com/releases/2004/06/040610075313.htm>.
Johns Hopkins University. (2004, June 10). Low-cost Robot Could Locate Land Mines In Rugged Terrain. ScienceDaily. Retrieved April 24, 2014 from www.sciencedaily.com/releases/2004/06/040610075313.htm
Johns Hopkins University. "Low-cost Robot Could Locate Land Mines In Rugged Terrain." ScienceDaily. www.sciencedaily.com/releases/2004/06/040610075313.htm (accessed April 24, 2014).

Share This



More Matter & Energy News

Thursday, April 24, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

UN Joint Mission Starts Removing Landmines in Cyprus

UN Joint Mission Starts Removing Landmines in Cyprus

AFP (Apr. 23, 2014) The UN mission in Cyprus (UNFICYP) led a mine clearance demonstration on Wednesday in the UN-controlled buffer zone where demining operations are being conducted near the Cypriot village of Mammari. Duration: 01:00 Video provided by AFP
Powered by NewsLook.com
Air Force: $4.2B Saved from Grounding A-10s

Air Force: $4.2B Saved from Grounding A-10s

AP (Apr. 23, 2014) Speaking about the future of the United States Air Force, Chief of Staff Gen. Mark Welsh says the choice to divest the A-10 fleet was logical and least impactful. (April 23) Video provided by AP
Powered by NewsLook.com
Jets Fuel Jump in Boeing's Revenue

Jets Fuel Jump in Boeing's Revenue

Reuters - Business Video Online (Apr. 23, 2014) A sharp rise in revenue for commercial jets offset a decline in Boeing's defense business. And a big increase in deliveries lifted profitability. Fred Katayama reports. Video provided by Reuters
Powered by NewsLook.com
Is North Korea Planning Nuclear Test #4?

Is North Korea Planning Nuclear Test #4?

Newsy (Apr. 22, 2014) South Korean officials say North Korea is preparing to conduct another nuclear test, but is Pyongyang just bluffing this time? Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins