Featured Research

from universities, journals, and other organizations

Surprise: Fermilab's SELEX Experiment Finds Puzzling New Particle

June 18, 2004
Fermi National Accelerator Laboratory
The new meson, a combination of a strange quark and a charm antiquark, is the heaviest ever observed in this family, and it behaves in surprising ways -- it apparently breaks the rules on decaying into other particles.

Experimenter Mark Mattson checked SELEX apparatus.
Credit: Photo courtesy of Fermi National Accelerator Laboratory

BATAVIA, Illinois -- Scientists at the Department of Energy's Fermi National Accelerator Laboratory will announce on Friday, June 18 the observation of an unexpected new member of a family of subatomic particles called "heavy-light" mesons. The new meson, a combination of a strange quark and a charm antiquark, is the heaviest ever observed in this family, and it behaves in surprising ways -- it apparently breaks the rules on decaying into other particles.

As a rule, the more massive the meson, the shorter its lifetime before decaying into other particles. But not this time. This heavy meson lives three times longer than its lighter relatives.

"Strong decays follow the rule that the heavier the particle, the faster it falls apart, all other things being equal," said Carnegie Mellon University physicist and SELEX spokesman James Russ. "It's that last part-all other things being equal-that makes the new particle so interesting."

SELEX deputy cospokesperson Peter Cooper of Fermilab said this kind of contradiction is "just not supposed to happen. If this meson played by the normal rules of the strong interaction," Cooper said, "it should fall apart quickly and we never would have seen it."

In another contradiction, SELEX also saw the new meson decay about six times more often than expected into an eta particle (a rarer but well-studied member of the meson family), rather than into the expected particle, called a K meson.

"It's like watching a water bucket with a large hole and small hole in the bottom," Russ said. "For some reason, the water is pouring out the small hole six times faster than it's coming out of the large one. Something unusual must be going on inside the bucket."

This first observation of the new meson expands the picture of the ways in which the strong force works within the atomic nucleus. The same strong force that keeps the nuclei of atoms from flying apart also controls the decay rates of particles. Why does the new meson break the highly predictable decay pattern of other mesons? How many other patterns might there be?

Mesons tend to be a short-lived tribe. Their lifetimes are so short that they show themselves as a range of masses-what particle physicists call the particle's "width." This unusual effect -- a particle's mass being uncertain because it lives a very short time -- is a direct result of the Heisenberg uncertainty principle. It is a vivid demonstration that these particles live in a quantum world. The meson lifetime is 10 (-24) seconds, or about the amount of time it takes light to cross a proton. By comparison, light travels one foot in a billionth of a second.

A meson is made up of a quark and an antiquark, bound together by the strong force. The combination of a massive quark, like the charm quark, with a light quark (in this case, a strange quark) presents an especially interesting laboratory in which to study the strong force. In heavy-light mesons, the motion of the quarks is simpler than in other mesons -- the heavy quark sits still and physicists only have to keep track of the motion of the lighter quark completing the system.

"This new particle is showing a possible deviation from the expected path that most mesons take," Fermilab theorist Christopher Hill confirmed. "It suggests that some intriguing new dynamical aspect of the strong force is at work, and it opens the door for many future explorations, at Fermilab and around the world."

The discovery by the members of the SELEX collaboration uses data from their fixed-target experiment at Fermilab's Tevatron, the world's highest-energy particle accelerator. SELEX studies the results of protons colliding with solid targets of copper and diamond. While the SELEX experiment stopped taking data in 1997, an extended analysis revealed this new particle lurking within their data.

In the spring of 2003, experiments at three electron-positron colliders -- BABAR at Stanford (Cal.) Linear Accelerator Center, CLEO at Cornell University in New York, and BELLE at KEK in Tsukuba, Japan -- announced the discovery of a new pair of charm-strange mesons. While these mesons had been predicted theoretically, their properties didn't match theory. They had such low masses that they could not decay in the preferred way, so they had long lifetimes.

Following the 2003 announcements, SELEX began to reexamine its own results to seek out more eta particles and determine whether they existed in more interesting combinations. But before any results could be deemed conclusive, the collaboration had to prove that it understood the unique photon detector well enough to vouch for that type of data. Several Russian collaborators within SELEX conducted painstaking tests of the detector, which they had built; their answer was "yes."

The SELEX discovery adds yet another contradiction to the conventional predictions of meson behavior. The known symmetries of heavy-light mesons predict that other active experiments, such as BABAR, CLEO and BELLE, as well as Fermilab's FOCUS experiment, will be able to see this particle and various partner particles in their data, expanding even further our picture of the strong force, and building on the SELEX result.

The collaboration has submitted a paper describing the result --"First Observation of a Narrow Charm-Strange Meson DsJ+(2632)->Ds(eta)+ and D0K+" -- to Physical Review Letters. The result is being presented on Friday, June 18 in a seminar at Fermilab by physicist Anatoly Evdokimov of the Institute of Theoretical and Experimental Physics, Moscow, Russia.

A relatively small experiment by the standards of particle physics, SELEX is made up of about 125 physicists from 21 institutions around the world. Included are six institutions in the U.S., four in Russia, three in South America, two in Italy, and one each in Turkey, Germany, Mexico, the United Kingdom, Israel and the Peoples Republic of China.

Fermilab is a U.S. Department of Energy-Office of Science national laboratory, operated under contract by Universities Research Association, Inc.

Story Source:

The above story is based on materials provided by Fermi National Accelerator Laboratory. Note: Materials may be edited for content and length.

Cite This Page:

Fermi National Accelerator Laboratory. "Surprise: Fermilab's SELEX Experiment Finds Puzzling New Particle." ScienceDaily. ScienceDaily, 18 June 2004. <www.sciencedaily.com/releases/2004/06/040618064932.htm>.
Fermi National Accelerator Laboratory. (2004, June 18). Surprise: Fermilab's SELEX Experiment Finds Puzzling New Particle. ScienceDaily. Retrieved April 23, 2014 from www.sciencedaily.com/releases/2004/06/040618064932.htm
Fermi National Accelerator Laboratory. "Surprise: Fermilab's SELEX Experiment Finds Puzzling New Particle." ScienceDaily. www.sciencedaily.com/releases/2004/06/040618064932.htm (accessed April 23, 2014).

Share This

More Matter & Energy News

Wednesday, April 23, 2014

Featured Research

from universities, journals, and other organizations

Featured Videos

from AP, Reuters, AFP, and other news services

UN Joint Mission Starts Removing Landmines in Cyprus

UN Joint Mission Starts Removing Landmines in Cyprus

AFP (Apr. 23, 2014) The UN mission in Cyprus (UNFICYP) led a mine clearance demonstration on Wednesday in the UN-controlled buffer zone where demining operations are being conducted near the Cypriot village of Mammari. Duration: 01:00 Video provided by AFP
Powered by NewsLook.com
Air Force: $4.2B Saved from Grounding A-10s

Air Force: $4.2B Saved from Grounding A-10s

AP (Apr. 23, 2014) Speaking about the future of the United States Air Force, Chief of Staff Gen. Mark Welsh says the choice to divest the A-10 fleet was logical and least impactful. (April 23) Video provided by AP
Powered by NewsLook.com
Jets Fuel Jump in Boeing's Revenue

Jets Fuel Jump in Boeing's Revenue

Reuters - Business Video Online (Apr. 23, 2014) A sharp rise in revenue for commercial jets offset a decline in Boeing's defense business. And a big increase in deliveries lifted profitability. Fred Katayama reports. Video provided by Reuters
Powered by NewsLook.com
Is North Korea Planning Nuclear Test #4?

Is North Korea Planning Nuclear Test #4?

Newsy (Apr. 22, 2014) South Korean officials say North Korea is preparing to conduct another nuclear test, but is Pyongyang just bluffing this time? Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.


Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News


Free Subscriptions

Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile

Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?

Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins