Featured Research

from universities, journals, and other organizations

'Cool' Fuel Cells Could Revolutionize Earth's Energy Resources

Date:
July 23, 2004
Source:
University Of Houston
Summary:
As temperatures soar this summer, so do electric bills. Researchers at the University of Houston are striving toward decreasing those costs with the next revolution in power generation.

HOUSTON, July 22, 2004 — As temperatures soar this summer, so do electric bills. Researchers at the University of Houston are striving toward decreasing those costs with the next revolution in power generation.

Imagine a power source so small, yet so efficient, that it could make cumbersome power plants virtually obsolete while lowering your electric bill. A breakthrough in thin film solid oxide fuel cells (SOFCs) is currently being refined in labs at the University of Houston, making that dream a reality.

Originating from research at UH's Texas Center for Superconductivity and Advanced Materials (TcSAM), these SOFCs of the "thin film" variety are both efficient and compact. With potential ranging from use in the government in matters of defense and space travel to driving forces in the consumer market that include computers and electricity, this breakthrough carries tremendous impact.

"By using materials science concepts developed in our superconductivity research and materials processing concepts in our semiconductor research, we are able to reduce operating temperatures, eliminate steps and use less expensive materials that will potentially revolutionize from where we derive electrical energy," said Alex Ignatiev, director of TcSAM and distinguished university professor of physics, chemistry and electrical and computer engineering at UH. "While there are a number of fuel cell research programs at the university, ours focuses on the application of thin film science and technology to gain the benefits of efficiency and low cost."

Compared to the macroscopic size of traditional fuel cells that can take up an entire room, thin film SOFCs are one micron thick – the equivalent of about one-hundredth of a human hair. Putting this into perspective, the size equivalent of four sugar cubes would produce 80 watts – more than enough to operate a laptop computer, eliminating clunky batteries and giving you hours more juice in your laptop. By the same token, approximately two cans' worth of soda would produce more than five kilowatts, enough to power a typical household.

Keeping in mind that one thin film SOFC is just a fraction of the size of a human hair with an output of 0.8 to 0.9 Volts, a stack of 100 to 120 of these fuel cells would generate about 100 volts. When connected to a homeowner's natural gas line, the stack would provide the needed electrical energy to run the household at an efficiency of approximately 65 percent. This would be a twofold increase over power plants today, as they operate at 30 to 35 percent efficiency. Stand-alone household fuel cell units could form the basis for a new 'distributed power' system. In this concept, energy not used by the household would be fed back into a main grid, resulting in a credit to the user's account, while overages would similarly receive extra energy from that grid and be charged accordingly.

"The initial applications of our thin film fuel cell would probably be for governmental entities," Ignatiev said. "For instance, once the preliminary data satisfies the Department of Defense, we could see our fuel cell research in action in the backpacks of soldiers, replacing heavy batteries to power their computers and night vision goggles and such.

"NASA also is very interested in this research mainly because of the weight and size factors," he said. "Thin film SOFCs offer light, compact, low mass properties of significant interest to them. Right now, the shuttle routinely uses fuel cells that require ultrapure oxygen and hydrogen, use exotic materials and are massive and large. But the thin film SOFCs we are developing at UH are not as sensitive to contaminants and are highly efficient in their design and lightweight size, which is ideal for space applications."

Inherent to the more efficient design of these "cool" fuel cells is quite literally the fact that they operate at a much lower temperature than other solid oxide fuel cells, yet do not need a catalyst. Despite their 60 to 70 percent efficiency, SOFCs, in general, operate at 900 to 1,000 degrees Celsius, a very high temperature that requires exotic structural materials and significant thermal insulation. However, the thin film solid oxide fuel cell has an operating temperature of 450 to 500 degrees Celsius, one half that of current SOFCs. This lower temperature is largely a result of the drastically decreased thickness of the electrolyte-working region of these thin film SOFCs and negates the need for exotic structural materials and extensive insulation. The lower temperature also eliminates the need for catalysts (known as reformers) for the fuel cell. All of these features indicate a reduced cost for the thin film SOFC and positive future impact on the fuel cell market.

Ignatiev anticipates that what he and his colleagues have been developing in UH's TcSAM laboratories will advance to the testing phase within the next six months. The collaborative test bed for this thin film SOFC testing is the Houston Advanced Research Center's Center for Fuel Cell Research and Applications.


Story Source:

The above story is based on materials provided by University Of Houston. Note: Materials may be edited for content and length.


Cite This Page:

University Of Houston. "'Cool' Fuel Cells Could Revolutionize Earth's Energy Resources." ScienceDaily. ScienceDaily, 23 July 2004. <www.sciencedaily.com/releases/2004/07/040723090306.htm>.
University Of Houston. (2004, July 23). 'Cool' Fuel Cells Could Revolutionize Earth's Energy Resources. ScienceDaily. Retrieved September 22, 2014 from www.sciencedaily.com/releases/2004/07/040723090306.htm
University Of Houston. "'Cool' Fuel Cells Could Revolutionize Earth's Energy Resources." ScienceDaily. www.sciencedaily.com/releases/2004/07/040723090306.htm (accessed September 22, 2014).

Share This



More Matter & Energy News

Monday, September 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Raw: SpaceX Rocket Carries 3-D Printer to Space

Raw: SpaceX Rocket Carries 3-D Printer to Space

AP (Sep. 22, 2014) — A SpaceX Rocket launched from Cape Canaveral, carrying a custom-built 3-D printer into space. NASA envisions astronauts one day using the printer to make their own spare parts. (Sept. 22) Video provided by AP
Powered by NewsLook.com
Thousands March in NYC Over Climate Change

Thousands March in NYC Over Climate Change

AP (Sep. 21, 2014) — Accompanied by drumbeats, wearing costumes and carrying signs, thousands of demonstrators filled the streets of Manhattan and other cities around the world on Sunday to urge policy makers to take action on climate change. (Sept. 21) Video provided by AP
Powered by NewsLook.com
What This MIT Sensor Could Mean For The Future Of Robotics

What This MIT Sensor Could Mean For The Future Of Robotics

Newsy (Sep. 20, 2014) — MIT researchers developed a light-based sensor that gives robots 100 times the sensitivity of a human finger, allowing for "unprecedented dexterity." Video provided by Newsy
Powered by NewsLook.com
MIT BioSuit A New Take On Traditional Spacesuits

MIT BioSuit A New Take On Traditional Spacesuits

Newsy (Sep. 19, 2014) — The MIT BioSuit could be an alternative to big, bulky traditional spacesuits, but the concept needs some work. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins