Featured Research

from universities, journals, and other organizations

New Model Shows Calcium Control Is Key For Synapse Homeostasis

Date:
October 8, 2004
Source:
Brown University
Summary:
When memories are made and learning occurs, the connections between brain cells change. Scientists know that an influx of calcium is critical to this process. A theoretical model developed by a Brown University research team shows that cells' ability to fine-tune this calcium flow not only sparks changes in synapses but also allows cells to maintain a working state of equilibrium.

PROVIDENCE, R.I. – A research team based at Brown University has created a theoretical model that may shed light on a brain science mystery: What happens to cells when humans learn and remember?

Luk Chong Yeung, a neuroscience research associate, and her colleagues have come up with a concept that hinges on calcium control. Certain receptors, which act like gates, allow calcium to rush into brain cells that receive memory-making information. Once inside these cells, calcium sets off chemical reactions that change the connections between neurons, or synapses. That malleability, known as synaptic plasticity, is believed to be the fundamental basis of memory, learning and brain development.

The Brown team showed that the control of these receptors not only makes synapses stronger or weaker, but also stabilizes them - without interfering with the richness of the cellular response to signals sent from neighboring cells. Their model appears in the current online early edition of the Proceedings of the National Academy of Sciences.

"The beauty of the brain is that it is plastic and robust at the same time," Luk Chong said. "If the model is verified experimentally, we've solved an important piece of the puzzle of how these seemingly antagonistic properties can and, in fact must, coexist in the cell."

When Luk Chong helped create the model, she was a Brown graduate student pursing her doctoral degree in physics and working at the Institute for Brain and Neural Systems, a research laboratory run by Nobel Prize-winning physicist Leon Cooper.

Two years ago, institute scientists developed a model where N-methyl-D-aspartate receptors control the flow of calcium into signal-receiving neurons. They showed that the model unified several observations of synaptic plasticity and, after being tested in labs, it is seen as the standard model by many researchers in the field.

But the model had a flaw. Although it explained how synapses get stronger or weaker, it didn't account for how synapses stabilize. Without homeostasis, synapses could grow indefinitely - an impossible scenario. So Luk Chong and her colleagues began working on a new version.

They based their model on experimental data as well as mathematical equations. Then Luk Chong applied the model to a simulated brain cell receiving signals from competing synapses. She found that the theory held up: Regulating the flow of calcium into cells allows not only for rapid synaptic changes that capture the transient features of the signal, but also slows homeostatic control that returns the cell to a steady state.

"The key feature of the model is that, unlike many neural learning theories, it is built on real quantities that can be measured in the lab," Luk Chong said. "But the basic principles are universal enough to be applied to any stable plasticity model."

The research team included Cooper, a professor of physics and neuroscience at Brown; Harel Shouval, an assistant professor of neurobiology and anatomy at the University of Texas Medical School at Houston; and Brian Blais, a professor of physics at Bryant College.

The Burroughs Wellcome Fund and the Galkin Foundation funded the work.


Story Source:

The above story is based on materials provided by Brown University. Note: Materials may be edited for content and length.


Cite This Page:

Brown University. "New Model Shows Calcium Control Is Key For Synapse Homeostasis." ScienceDaily. ScienceDaily, 8 October 2004. <www.sciencedaily.com/releases/2004/10/041008025732.htm>.
Brown University. (2004, October 8). New Model Shows Calcium Control Is Key For Synapse Homeostasis. ScienceDaily. Retrieved July 23, 2014 from www.sciencedaily.com/releases/2004/10/041008025732.htm
Brown University. "New Model Shows Calcium Control Is Key For Synapse Homeostasis." ScienceDaily. www.sciencedaily.com/releases/2004/10/041008025732.htm (accessed July 23, 2014).

Share This




More Health & Medicine News

Wednesday, July 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Idaho Boy Helps Brother With Disabilities Complete Triathlon

Idaho Boy Helps Brother With Disabilities Complete Triathlon

Newsy (July 23, 2014) An 8-year-old boy helped his younger brother, who has a rare genetic condition that's confined him to a wheelchair, finish a triathlon. Video provided by Newsy
Powered by NewsLook.com
Stone Fruit Listeria Scare Causes Sweeping Recall

Stone Fruit Listeria Scare Causes Sweeping Recall

Newsy (July 22, 2014) The Wawona Packing Company has issued a voluntary recall on the stone fruit it distributes due to a possible Listeria outbreak. Video provided by Newsy
Powered by NewsLook.com
Huge Schizophrenia Study Finds Dozens Of New Genetic Causes

Huge Schizophrenia Study Finds Dozens Of New Genetic Causes

Newsy (July 22, 2014) The 83 new genetic markers could open dozens of new avenues for schizophrenia treatment research. Video provided by Newsy
Powered by NewsLook.com
CDC Head Concerned About a Post-Antibiotic Era

CDC Head Concerned About a Post-Antibiotic Era

AP (July 22, 2014) Sounding alarms about the growing threat of antibiotic resistance, CDC Director Tom Frieden warned Tuesday if the global community does not confront the problem soon, the world will be living in a devastating post-antibiotic era. (July 22) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins