Featured Research

from universities, journals, and other organizations

Long-Sought Key To Hearing May Be Found In Protein Discovery

Date:
October 14, 2004
Source:
Harvard Medical School
Summary:
Researchers at Harvard Medical School and their colleagues report in the October 13 Nature advanced on-line edition that they have identified a protein deep in the inner ear that they believe translates sound into the nerve impulses used by the brain.

Scanning electron micrograph of hair cells from the bullfrog inner ear, which contain the mechanically-gated ion channel TRPA1.
Credit: Image courtesy of Howard Hughes Medical Institute

BOSTON (October 13, 2004) -- Researchers at Harvard Medical School and their colleagues report in the October 13 Nature advanced on-line edition that they have identified a protein deep in the inner ear that they believe translates sound into the nerve impulses used by the brain.

"People have been looking for this protein for a decade," says David Corey, HMS professor of neurobiology and an investigator of the Howard Hughes Medical Institute. Other protein candidates have been nominated, but this is "the strongest evidence yet that this protein is the hair-cell transduction channel," says Corey, lead author of the paper.

The discovery could help scientists investigate normal hearing and inherited forms of deafness, which typically involve other protein pieces of the same acoustic apparatus, says Corey, also co-director of the HMS Center for Hereditary Deafness.

"This is the most important molecule in the ear," said Peter Gillespie, a neurobiologist at Oregon Health & Science University who recently has helped identify important parts connecting to either side of the channel. "This channel is the jewel everyone would like to find. Identifying it is getting at the real kernel of how the inner ear works."

The protein, TRPA1 (pronounced TRIP-AY-ONE), is located at the tips of specialized cilia on hair cells of the inner ear. Scientists believe the protein forms pores that open and close in sync with sound waves, allowing ions to flow into the cells and to transform the vibrations into electric signals. The same protein channel also may help people distinguish between tones of different frequencies.

Sound travels through the auditory system like a message relayed through the jungle from drum to drum. Snippets of conversation or the roar of a leaf blower are collected by the fleshy outer part of the ear and funneled inside where a delicate percussion section vibrates, taps and shivers.

The key elements in converting sound into nerve impulses are the bundles of cilia that protrude from the tops of hair cells and give them their name. Inside the cochlea, the stiff cilia bend at their bases when the pulsing sound waves push against them thousands of times a second. Small protein strings called tip links connect the tip of each cilium with its taller neighbor. (Six months ago, other researchers discovered the molecular identity of the tip links.) With each vibration, the bending cilia pull on the links connecting them, yanking open the channels to allow ions to flood into the cilia. The resulting voltage change activates the conversion of sound to a nerve signal. Then, the cilia bend back and ion channels snap shut.

"Hair cells convert a mechanical stimulus into an electrical signal with molecular, strings, springs and levers," Corey says. "It's cell biology, but it's wonderfully mechanical as well."

In their paper, Corey and his colleagues present evidence that the mysterious ion channel is actually TRPA1. The TRP proteins are a trendy new family of ion channels involved in sensory perception. Different TRP proteins help insects see and hear, mammals taste and sense heat and pheromones. A small clan known as TRPN help fruit flies sense touch and fish hear.

At the beginning of their study, Corey and his colleagues systematically evaluated all of the several dozen mouse TRP channels with RNA probes to locate the ones expressed by hair cells of the mouse cochlea. TRPA1 looked most promising. Using antibodies to TRPA1, the team found that the channels were located at the tips of hair cell cilia.

As attractive as the protein appeared, it had to pass several other rigorous tests made possible by scientific advances in the last several years. In zebrafish, the researchers blocked expression of the TRPA1 protein and found their hair cells did not generate electrical signals in response to vibration. In a related test, these hair cells showed none of the telltale glow when exposed to a fluorescent dye that usually pours in through working transduction ion channels.

In the third set of experiments, collaborators at the University of Virginia School of Medicine genetically blocked the TRPA1 channel in hair cells of embryonic mice, using siRNAs carried in with adenoviruses, and measured the response. They recorded barely any electrical activity in the hair cells with blocked TRPA1. Likewise, the hair cells did not take up the fluorescent dye. Although the discovery needs confirmation by other methods, TRPA1 is the best candidate for the hair-cell transduction channel.

What are the implications for hearing and deafness? "Other protein components of the transduction apparatus cause inherited deafness and blindness when mutated," Corey says. "Although there is no evidence for it at the moment, the same may be true for TRPA1. Having the transduction channel will accelerate a search for the remaining protein pieces, and these in turn may be causes of inherited deafness."


Story Source:

The above story is based on materials provided by Harvard Medical School. Note: Materials may be edited for content and length.


Cite This Page:

Harvard Medical School. "Long-Sought Key To Hearing May Be Found In Protein Discovery." ScienceDaily. ScienceDaily, 14 October 2004. <www.sciencedaily.com/releases/2004/10/041013233332.htm>.
Harvard Medical School. (2004, October 14). Long-Sought Key To Hearing May Be Found In Protein Discovery. ScienceDaily. Retrieved July 23, 2014 from www.sciencedaily.com/releases/2004/10/041013233332.htm
Harvard Medical School. "Long-Sought Key To Hearing May Be Found In Protein Discovery." ScienceDaily. www.sciencedaily.com/releases/2004/10/041013233332.htm (accessed July 23, 2014).

Share This




More Health & Medicine News

Wednesday, July 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Courts Conflicted Over Healthcare Law

Courts Conflicted Over Healthcare Law

AP (July 22, 2014) Two federal appeals courts issued conflicting rulings Tuesday on the legality of the federally-run healthcare exchange that operates in 36 states. (July 22) Video provided by AP
Powered by NewsLook.com
Why Do People Believe We Only Use 10 Percent Of Our Brains?

Why Do People Believe We Only Use 10 Percent Of Our Brains?

Newsy (July 22, 2014) The new sci-fi thriller "Lucy" is making people question whether we really use all our brainpower. But, as scientists have insisted for years, we do. Video provided by Newsy
Powered by NewsLook.com
Scientists Find New Way To Make Human Platelets

Scientists Find New Way To Make Human Platelets

Newsy (July 22, 2014) Boston scientists have discovered a new way to create fully functioning human platelets using a bioreactor and human stem cells. Video provided by Newsy
Powered by NewsLook.com
Gilead's $1000-a-Pill Drug Could Cure Hep C in HIV-Positive People

Gilead's $1000-a-Pill Drug Could Cure Hep C in HIV-Positive People

TheStreet (July 21, 2014) New research shows Gilead Science's drug Sovaldi helps in curing hepatitis C in those who suffer from HIV. In a medical study, the combination of Gilead's Hep C drug with anti-viral drug Ribavirin cured 76% of HIV-positive patients suffering from the most common hepatitis C strain. Hepatitis C and related complications have been a top cause of death in HIV-positive patients. Typical medication used to treat the disease, including interferon proteins, tended to react badly with HIV drugs. However, Sovaldi's %1,000-a-pill price tag could limit the number of patients able to access the treatment. TheStreet's Keris Lahiff reports from New York. Video provided by TheStreet
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins