Featured Research

from universities, journals, and other organizations

Scientists See An 'Effect' Of Superconductor Research, Find Evidence That A Theoretical Phenomenon Is Real

Date:
November 3, 2004
Source:
Brookhaven National Laboratory
Summary:
Recent research by a scientist at the U.S. Department of Energy’s Brookhaven National Laboratory and his collaborators may lead to new advances in electronic circuitry and new clues to the causes of high-temperature superconductivity. The researchers found evidence to support the existence of the theoretical “Giant Proximity Effect,” a physical phenomenon in which a thick layer of a conventional metal conducts like a superconductor.

Brookhaven physicist Ivan Bozovic.
Credit: Photo courtesy of Brookhaven National Laboratory

Upton, NY - Recent research by a scientist at the U.S. Department of Energy’s Brookhaven National Laboratory and his collaborators may lead to new advances in electronic circuitry and new clues to the causes of high-temperature superconductivity. The researchers found evidence to support the existence of the theoretical “Giant Proximity Effect,” a physical phenomenon in which a thick layer of a conventional metal conducts like a superconductor – that is, with no resistance – when it is placed in contact with a superconducting material.

Related Articles


The Giant Proximity Effect (GPE) is a theoretical relative of the established Proximity Effect (PE), in which a very thin layer of ‘normal’ metal behaves like a superconductor when placed between two thicker superconductor slices. However, PE theory states that GPE, which occurs across a relatively thick normal metal layer, should not be possible.

“Our discovery indicates PE theory may need to be revised to incorporate GPE,” said Brookhaven physicist Ivan Bozovic, the study’s lead researcher. “While that is significant in itself, this observation may also lead to a critical step forward in the development of superconducting electronics.”

The research is published in the October 4, 2004 online edition of Physical Review Letters.

In GPE, the normal-metal barrier layer is much larger than in the PE case, as much as 100 times the thickness. In this experiment, the barrier layer was up to 20 nanometers, or billionths of a meter, thick. Having such dimensions makes these “sandwiches,” called Josephson junctions, the right size for manufacturing into components for “nano”-sized electric circuits.

Bozovic and his collaborators made a number of Josephson junctions with varying barrier thicknesses. They used a high-temperature superconducting material that contains lanthanum, strontium, copper, and oxygen (LSCO) and a ‘normal’ material called LCO, which lacks the strontium. LCO is technically a superconductor, but behaves like a regular metal above a certain “transition” temperature. Both LSCO and LCO are “cuprates,” a family of superconductors that contain copper oxide. In this experiment, the thick LCO barrier transmitted a superconducting current at temperatures well above its normal superconducting temperature.

“Our experiment shows that, under the right conditions, at least, GPE is no longer just a theoretical phenomenon,” said Bozovic. “In the cuprates we studied, relatively thick barriers of normal metals can conduct a superconducting current when sandwiched between two superconductors.”

In past experiments, other researchers have made the same claims, but have been met with skepticism by the scientific community. This is partly due to GPE’s utter inconsistency with the established theory, which states that the electron pairs that make up a supercurrent can travel only one or two tenths of a nanometer before separating. Additionally, possible experimental errors may have skewed the results of these previous experiments. One example would be “microshorts” – tiny superconductor filaments that pierce the barrier, causing the appearance of a superconducting current across it.

In light of this, Bozovic and his collaborators carefully chose materials and prepared their experimental setup to avoid these errors. LSCO and LCO are very similar, and match up well at the atomic level when sandwiched together. This results in an atomically smooth interface between the layers that lacks microshorts and “pinholes,” tiny unwanted holes in the junction that could cause a superconducting current to appear to pass through the normal metal layer.

In upcoming experiments, Bozovic and his colleagues plan to investigate how the current is transmitted across the LCO barrier to learn more about the mechanisms behind GPE. They will also look more closely at how the current flow depends on the thickness of the barrier, the temperature of the junction, and other factors.

The research is funded by the Air Force Office of Scientific Research and the U.S. Department of Energy’s Office of Science. It was performed in collaboration with researchers at Stanford University and Oxxel, a technology company in Bremen, Germany.


Story Source:

The above story is based on materials provided by Brookhaven National Laboratory. Note: Materials may be edited for content and length.


Cite This Page:

Brookhaven National Laboratory. "Scientists See An 'Effect' Of Superconductor Research, Find Evidence That A Theoretical Phenomenon Is Real." ScienceDaily. ScienceDaily, 3 November 2004. <www.sciencedaily.com/releases/2004/10/041030203329.htm>.
Brookhaven National Laboratory. (2004, November 3). Scientists See An 'Effect' Of Superconductor Research, Find Evidence That A Theoretical Phenomenon Is Real. ScienceDaily. Retrieved January 30, 2015 from www.sciencedaily.com/releases/2004/10/041030203329.htm
Brookhaven National Laboratory. "Scientists See An 'Effect' Of Superconductor Research, Find Evidence That A Theoretical Phenomenon Is Real." ScienceDaily. www.sciencedaily.com/releases/2004/10/041030203329.htm (accessed January 30, 2015).

Share This


More From ScienceDaily



More Matter & Energy News

Friday, January 30, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Nanoscale Sensor Could Help Wine Producers and Clinical Scientists

Nanoscale Sensor Could Help Wine Producers and Clinical Scientists

Reuters - Innovations Video Online (Jan. 30, 2015) — A nanosensor that mimics the oral effects and sensations of drinking wine has been developed by Danish and Portuguese researchers. Jim Drury saw it in operation. Video provided by Reuters
Powered by NewsLook.com
Tesla 'Insane Mode' Gives Unsuspecting Passengers the Ride of Their Life

Tesla 'Insane Mode' Gives Unsuspecting Passengers the Ride of Their Life

RightThisMinute (Jan. 29, 2015) — If your car has an "Insane Mode" then you know it&apos;s fast. Well, these unsuspecting passengers were in for one insane ride when they hit the button. Tesla cars are awesome. Video provided by RightThisMinute
Powered by NewsLook.com
Now Bill Gates Is 'Concerned' About Artificial Intelligence

Now Bill Gates Is 'Concerned' About Artificial Intelligence

Newsy (Jan. 29, 2015) — Bill Gates joins the list of tech moguls scared of super-intelligent machines. He says more people should be concerned, but why? Video provided by Newsy
Powered by NewsLook.com
Senate Passes Bill for Keystone XL Pipeline

Senate Passes Bill for Keystone XL Pipeline

AP (Jan. 29, 2015) — The Republican-controlled Senate has passed a bipartisan bill approving construction of the Keystone XL oil pipeline. (Jan. 29) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins