Featured Research

from universities, journals, and other organizations

Researchers Hope New Model Will Help Outmuscle Aggressive Childhood Cancer

Date:
November 15, 2004
Source:
Howard Hughes Medical Institute
Summary:
The first accurate mouse model of an aggressive childhood muscle cancer has improved researchers' understanding of the cause of the disease and could accelerate the identification of new chemotherapeutics to treat the disorder, which is called alveolar rhabdomyosarcoma.

The first accurate mouse model of an aggressive childhood muscle cancer has improved researchers' understanding of the cause of the disease and could accelerate the identification of new chemotherapeutics to treat the disorder, which is called alveolar rhabdomyosarcoma.

Related Articles


The researchers, led by Howard Hughes Medical Institute investigator Mario R. Capecchi, described their model of the cancer in two research articles published in the November 1, 2004, issue of the journal Genes and Development. Capecchi and his colleagues are at the University of Utah; one co-author was from the Harvard Medical School. The first author on both papers was Charles Keller, who works in Capecchi's laboratory.

“This cancer has an enormous lethality associated with it,” said Capecchi. “It progresses extremely rapidly once it appears, such that by the time the child gets treatment, either the tumor is so integrated into the tissue that it is not easily resectable, or it has metastasized.” The five-year survival for children with metastatic disease is less than 30 percent, he said.

According to Capecchi, researchers had known that in the majority of alveolar rhabdomyosarcoma tumors, segments of two specific genes fuse together abnormally. One of these gene segments comes from the forkhead gene, and acts as that gene's on-switch. Normally, forkhead produces a protein called a transcription factor that controls an array of other genes. The other gene involved in the fusion is either of two Pax genes, Pax3 or Pax7, which are both important regulators of muscle development. The fusion of the two gene segments creates a novel transcription factor that somehow triggers tumor development in affected muscle cells.

Previous attempts to generate mice with the fusion gene did not produce viable animal models, said Capecchi. A major obstacle was that incorporating the fusion gene directly into mouse embryos resulted in immediate lethality.

To overcome this, Capecchi and his colleagues developed what he described as a “conditional knock-in” mouse. They did this by introducing a gene that they had designed to produce only normal protein until the mouse carrying it was cross-bred with a particular mouse strain, which then allowed the fusion gene to be produced specifically in skeletal muscle. This approach eliminated the early lethality due to the fusion, and more accurately recapitulated the behavior of the naturally occurring fusion gene, Capecchi said.

Still, however, alveolar rhabdomyosarcomas occurred only at low frequency in these mice, and the researchers wondered whether they could increase the frequency. They knew that disruption of two other gene pathways had also been implicated in human alveolar rhabdomysarcomas. These pathways, which normally act as brakes on cell division, involve the genes Ink4a/ARF and Trp53. The researchers discovered that breeding their first conditional knock-in strain with a conditional inactivation of either Ink4a/ARF or Trp53 genes resulted in mice whose cancers closely mimicked those seen in humans at very high frequencies.

“We find very close resemblance to human tumors, in terms of the pathology, the histology, and the molecular markers,” said Capecchi. “When we give tissues from these mice to pathologists whose specialty is rhabdomyosarcomas, they find them to be remarkably similar to human tumors.”

Importantly for research purposes, said Capecchi, the scientists also incorporated a gene that produces a telltale fluorescent protein when the fusion gene is formed. This feature enables them to isolate actual tumor cells and study their molecular characteristics in detail.

Capecchi and his colleagues see considerable promise that the new mouse model will yield both improved basic understanding of the cancer and a pathway to new treatments. “With this model, we can study the pathology of the tumors in greater detail,” he said. “And more importantly, if we can work out the pathway of the genes involved, then this information could reveal likely targets for drugs that can intervene in the tumor process.”

Studies of the transgenic mice have already provided insight into the cellular origin of the muscle tumors, Capecchi said. Most theories held that the tumors arose from immature muscle stem cells, called “satellite cells,” that were triggered to proliferate abnormally. Satellite cells are the source of cells that repair muscle fibers after injury or overuse.

However, Capecchi and his colleagues found evidence that the tumors actually originated in differentiated muscle cells that the fusion gene caused to “dedifferentiate” into abnormal cells that could then proliferate to form tumors due to the lack of the genetic “brakes.”


Story Source:

The above story is based on materials provided by Howard Hughes Medical Institute. Note: Materials may be edited for content and length.


Cite This Page:

Howard Hughes Medical Institute. "Researchers Hope New Model Will Help Outmuscle Aggressive Childhood Cancer." ScienceDaily. ScienceDaily, 15 November 2004. <www.sciencedaily.com/releases/2004/11/041108014251.htm>.
Howard Hughes Medical Institute. (2004, November 15). Researchers Hope New Model Will Help Outmuscle Aggressive Childhood Cancer. ScienceDaily. Retrieved November 26, 2014 from www.sciencedaily.com/releases/2004/11/041108014251.htm
Howard Hughes Medical Institute. "Researchers Hope New Model Will Help Outmuscle Aggressive Childhood Cancer." ScienceDaily. www.sciencedaily.com/releases/2004/11/041108014251.htm (accessed November 26, 2014).

Share This


More From ScienceDaily



More Health & Medicine News

Wednesday, November 26, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Pet Dogs to Be Used in Anti-Ageing Trial

Pet Dogs to Be Used in Anti-Ageing Trial

Reuters - Innovations Video Online (Nov. 26, 2014) Researchers in the United States are preparing to discover whether a drug commonly used in human organ transplants can extend the lifespan and health quality of pet dogs. Video provided by Reuters
Powered by NewsLook.com
From Popcorn To Vending Snacks: FDA Ups Calorie Count Rules

From Popcorn To Vending Snacks: FDA Ups Calorie Count Rules

Newsy (Nov. 25, 2014) The US FDA is announcing new calorie rules on Tuesday that will require everywhere from theaters to vending machines to include calorie counts. Video provided by Newsy
Powered by NewsLook.com
Daily Serving Of Yogurt Could Reduce Risk Of Type 2 Diabetes

Daily Serving Of Yogurt Could Reduce Risk Of Type 2 Diabetes

Newsy (Nov. 25, 2014) Need another reason to eat yogurt every day? Researchers now say it could reduce a person's risk of developing type 2 diabetes. Video provided by Newsy
Powered by NewsLook.com
Madagascar Working to Contain Plague Outbreak

Madagascar Working to Contain Plague Outbreak

AFP (Nov. 24, 2014) Madagascar said Monday it is trying to contain an outbreak of plague -- similar to the Black Death that swept Medieval Europe -- that has killed 40 people and is spreading to the capital Antananarivo. Duration: 00:42 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins