Featured Research

from universities, journals, and other organizations

Estrogen-associated COX-2 Pathways Explain Protection From Heart Disease In Female Mice

Date:
December 6, 2004
Source:
University Of Pennsylvania Medical Center
Summary:
Heart disease is less pronounced in women than in men as humans age, but this difference narrows after menopause. Some studies have shown that estrogen slows heart disease in mouse models, but the mechanism is largely unknown. Now scientists from the University of Pennsylvania School of Medicine show for the first time that in female mice protection from hardening of the arteries purported to come from higher levels of estrogen acts predominately through cyclooxygenase (COX)-2.

Philadelphia, PA -- Heart disease is less pronounced in women than in men as humans age, but this difference narrows after menopause. Some studies have shown that estrogen slows heart disease in mouse models, but the mechanism is largely unknown. Now scientists from the University of Pennsylvania School of Medicine show for the first time that in female mice protection from hardening of the arteries purported to come from higher levels of estrogen acts predominately through cyclooxygenase (COX)-2.

Related Articles


Garret FitzGerald, MD, Chairman of the Department of Pharmacology, and colleagues found that estrogen binds to a cell receptor that activates COX-2, which in turn ramps up the production of the prostacyclin PGI2. This biochemical provides protective benefits both by inhibiting platelet activation and by reducing oxidative stress in the circulatory system by increasing expression of an antioxidant enzyme. Earlier experiments in mice by the FitzGerald lab and others have shown that platelet activation and oxidative stress can independently hasten hardening of the arteries. The most recent findings appear in the November 18 issue of Science.

This study shows for the first time that prostacyclin can modulate gender differences in atherosclerosis and that estrogen increases prostacyclin in an animal model. In addition, this research also demonstrates that estrogen upregulates COX-2-dependent prostacyclin and that prostacyclin contributes to the atheroprotective effect of estrogen.

Disabling the prostacyclin receptor in female mice whose ovaries have been removed took away the atheroprotective effect of estrogen. By taking away the ovaries, the investigators can pinpoint the direct effects of estrogen. In mice treated this way, estrogen, as expected, slows hardening of the arteries. Taking away the receptor for PGI2 in those animals largely undermines this protection, which was based on measuring the extent of atherosclerosis. Increased platelet activation was demonstrated by increased levels of the chemical thromboxane, and increased oxidative stress was measured by increases of isoprostanes in the urine.

Because of the direct links among estrogen, COX-2 pathways, and atheroprotection in female mice, this study raises concern about the use of COX-2 inhibitors in premenopausal women. These studies also raise the possibility of an interaction between hormone replacement therapy and drugs which inhibit COX-2, including traditional NSAIDs. Of particular concern for selective inhibitors of COX-2 would be for patients with juvenile arthritis, which involves mostly long-term drug use in young, premenopausal women, says FitzGerald, also Director of the Institute for Translational Medicine and Therapeutics.

Although researchers extrapolate results from mice to humans with extreme caution, recent studies linking COX-2 inhibitors with cardiovascular risk have focused attention on the possibility of slowly evolving cardiovascular risk during chronic treatment with selective COX-2 inhibitors. This study provides insight into how this risk might occur and identifies potential biomarkers of this evolving risk. The work was funded by the National Heart, Lung, and Blood Institute of the National Institutes of Health. Other Penn researchers on this paper were Karine M. Egan, John A. Lawson, Susanne Fries, Daniel J. Rader, and Emer M. Smyth, along with Beverley Koller, University of North Carolina.


Story Source:

The above story is based on materials provided by University Of Pennsylvania Medical Center. Note: Materials may be edited for content and length.


Cite This Page:

University Of Pennsylvania Medical Center. "Estrogen-associated COX-2 Pathways Explain Protection From Heart Disease In Female Mice." ScienceDaily. ScienceDaily, 6 December 2004. <www.sciencedaily.com/releases/2004/11/041123212242.htm>.
University Of Pennsylvania Medical Center. (2004, December 6). Estrogen-associated COX-2 Pathways Explain Protection From Heart Disease In Female Mice. ScienceDaily. Retrieved January 27, 2015 from www.sciencedaily.com/releases/2004/11/041123212242.htm
University Of Pennsylvania Medical Center. "Estrogen-associated COX-2 Pathways Explain Protection From Heart Disease In Female Mice." ScienceDaily. www.sciencedaily.com/releases/2004/11/041123212242.htm (accessed January 27, 2015).

Share This


More From ScienceDaily



More Health & Medicine News

Tuesday, January 27, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Ebola Mistakes Should Serve a Lesson Says WHO

Ebola Mistakes Should Serve a Lesson Says WHO

AFP (Jan. 25, 2015) The World Health Organization&apos;s chief on Sunday admitted the UN agency had been caught napping on Ebola, saying it should serve a lesson to avoid similar mistakes in future. Duration: 00:55 Video provided by AFP
Powered by NewsLook.com
Disneyland Measles Outbreak Spreads To 5 States

Disneyland Measles Outbreak Spreads To 5 States

Newsy (Jan. 24, 2015) Much of the Disneyland measles outbreak is being blamed on the anti-vaccination movement. The CDC encourages just about everyone get immunized. Video provided by Newsy
Powered by NewsLook.com
Growing Measles Outbreak Worries Calif. Parents

Growing Measles Outbreak Worries Calif. Parents

AP (Jan. 23, 2015) Public health officials are rushing to contain a measles outbreak that has sickened 70 people across 6 states and Mexico. The AP&apos;s Raquel Maria Dillon has more. (Jan. 23) Video provided by AP
Powered by NewsLook.com
Smart Wristband to Shock Away Bad Habits

Smart Wristband to Shock Away Bad Habits

Reuters - Innovations Video Online (Jan. 23, 2015) A Boston start-up is developing a wristband they say will help users break bad habits by jolting them with an electric shock. Ben Gruber reports. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins